1 |
Development of New Synthesis of Sulfur-oxazoline LigandsHuang, Nan-Yuan 03 October 2011 (has links)
This thesis is the use of commercially available methyl 2-iodobenzoate as the starting material and was prepared into iodine - oxazoline compound 118. Then, we undergo copper-catalyzed cross-coupling reactions of compound 118with thiols, and were readily facilitated to afford the corresponding desired products 127¡B136 in good to excellent yields. This method not only modified short- comings of that adding strong base to synthesis of sulfur-oxazoline ligands in past years but also has a good yield performances, the yield is 70 -87%. And we will use this strategy to undergo one pot reaction of carbon-sulfur coupling in future. In the end, we used new sulfur-oxazoline ligands127¡B128 in the Pd-catalyzed asymmetric alkylation of 1,3-diphenyl-2-propenyl acetate with dimethyl malonate. and reaction ee% were high, with the best result of 99% and 93% conversion.
|
2 |
Direct Carbon-Carbon Bond Formation via Base Mediated and Reductive Soft Enolization of Thioesters, the First Asymmetric Total Synthesis of (+)- and (-)-Clusianone, and Progress Toward the Asymmetric Total Synthesis of Brasilicardin AGarnsey, Michelle Renee January 2012 (has links)
<p>Three methodology studies and two total synthesis endeavors are presented. First, a study of Lewis acid and hydrogen bond mediated soft enolization of thioesters and their addition to imines in the Mannich reaction is reported. MgBr2*OEt2 and Hunig's base are used in concert with bulky thioesters and aromatic aldehydes to generate syn-b-aminothioesters with moderate diastereoselectivity and yield. Next, a biomimetic organocatalytic Mannich reaction is presented using a chiral cinchona alkaloid to effect the enantioselective addition of an imines to thioesters with high yield and diastereoselectivity and enantioselectivities up to 88:12.</p><p>The direct addition of enolizable aldehydes to a-iodo thioesters to produce b-hydroxy thioesters enabled by reductive soft enolization is reported. The transformation is operationally simple and efficient and has the unusual feature of giving high syn-selectivity, which is the opposite of that produced in the aldol addition with (thio)esters under conventional conditions. This method is tolerant to aldehydes and imines that contain acidic a-protons, as well as electrophiles containing other acidic protons and base-sensitive functional groups.</p><p>The development of a strategy for the asymmetric synthesis of a large portion of the polycyclic polyprenylated acyl phloroglucinols via N-amino cyclic carbamate hydrazones, and its application to the first asymmetric total synthesis of both (+)- and (-)-clusianone is discussed. The clusianones are synthesized with an er of 99:1 and their anti-HIV activity is found to be 1.53 and 1.13 M, respectively. A library of clusianone-like compounds is synthesized and their biological activity has been probed.</p><p>Finally, efforts towards the total synthesis of brasilicardin A are reported. An appropriate model system was synthesized, and conditions were established using a pinene-based aldol reaction to synthesize the b-methoxy-a-amino ester side chain of the molecule. Next, efforts toward the synthesis of the anti-syn-anti- perhydro-phenanthrene core are discussed.</p> / Dissertation
|
3 |
Total Syntheses of (+)-Geldanamycin, (-)-Ragaglitazar, and (+)-Kurasoin A and Phase-Transfer-Catalyzed Asymmetric AlkylationHicken, Erik J. 01 November 2005 (has links) (PDF)
Geldanamycin possesses various biological activities as seen in the NCI 60 cell line panel (13 nM avg., 70 nM SKBr-3 cells). The predominant mode of action providing these unique results arises from the ability of geldanamycin (GA) to bind to the chaperone heat shock protein 90 (Hsp90). Despite its complicated functionality, the first total synthesis of GA was accomplished, which included two new reactions developed specifically to address the stereochemical features. The final step in the synthesis of GA was a demethylation-oxidation sequence to generate the desired para-quinone. This step could only be accomplished with HNO3/AcOH, producing GA in 5% yield. A GA model study, which closely resembled the aromatic core, was extensively investigated to solve this critical oxidation issue. A protected hydroquinone model compound was determined to be the optimum choice. Using Pd in the presence of air with a 1,4-hydroquinone provided the desired para-quinone quickly and nearly quantitatively in 98% yield. This study formulated the recipe of success for para-quinone formation of GA and future synthetic analogs. Asymmetric glycolate alkylation has been developed using phase-transfer-catalysis (PTC). Diphenylmethoxy-2,5-dimethoxyacetophenone with trifluorobenzyl cinchonidinium catalyst and cesium hydroxide provided alkylation products at —35 °C in high yield (80-99%) and with excellent enantioselectivity (up to 90% ee). Useful α-hydroxy products were obtained using bis-TMS peroxide Baeyer—Villiger conditions and selective transesterification. The intermediate aryl esters can be obtained with >99% ee after a single recrystallization. The newly developed PTC glycolate alkylation was applied to the asymmetric syntheses of ragaglitazar and kurasoin A. Ragaglitazar is a potent antihyperglycemic and lipid modulator, currently in phase II clinical trials. Kurasoin A is a relatively potent protein farnesyltransferase (PFTase) inhibitor with an IC50 value of 59.0 micromolar. PTC glycolate alkylation was optimized to provide 4-benzyloxy glycolate intermediates in excellent overall yield and with 96% ee after recrystallization. Ragaglitazar was then synthesized after considerable experimentation to provide the potent lipid modulator with yields and enantiopurity rivaling the best-known routes produced by industry standards. Kurasoin A was produced through an α-triethylsiloxy Weinreb amide to provide the highest overall yielding route to this PFTase inhibitor currently disclosed.
|
4 |
Aryl Acetate Phase Transfer Catalysis: Method and Computation StudiesBinkley, Meisha A. 11 August 2011 (has links) (PDF)
Brief explanation and history of cinchona based Phase Transfer Catalysis (PTC). Studied aryl acetates in PTC, encompassing napthoyl, 6-methoxy napthoyl, phenyl and protected 4-hydroxy phenyl acetates. Investigated means of controlling the selectivity of the PTC reaction by changing the electrophile size, the ether side group size or by addition of inorganic salts. Found that either small or aromatic electophiles increased enantioselectivity more than aliphatic electrophiles, and that increasing the size of ether protecting group also increased selectivity. Positive effects of salt addition included either decreasing reaction time or increasing enantiomeric excess. Applied findings towards the synthesis of S-equol. Computational experiments working towards deducing the transition state between PTC and aryl acetate substrates.
|
5 |
Indolizidine alkaloids and asymmetric synthesis of carbocyclesWingert, David Alexander Unknown Date
No description available.
|
6 |
The Asymmetric Phase-Transfer Catalyzed Alkylation of Imidazolyl Ketones and Aryl Acetates and Their Applications to Total SynthesisChristiansen, Michael Andrew 10 March 2010 (has links) (PDF)
Phase-transfer catalysts derived from the cinchona alkaloids cinchonine and cinchonidine are widely used in the asymmetric alkylation of substrates bearing moieties that resonance stabilize their enolates. The investigation of α-oxygenated esters revealed decreased α-proton acidity, indicating the oxygen's overall destabilizing effect on enolates by electron-pair repulsion. Alkylation of α-oxygenated aryl ketones with various alkyl halides proved successful with a cinchonidine catalyst, giving products with high yield and enantioselectivity. The resulting compounds were converted to esters through modified Baeyer-Villiger oxidation. Alkylation with indolyl electrophiles gave products that underwent decomposition under Baeyer-Villiger conditions. Alternative N-methylimidazolyl ketones were explored. Alkylated imidazolyl ketones, obtained in high yield and enantioselectivity, could be converted to esters through treatment with methyl triflate and basic methanol. This technique has the advantage of not requiring stoichiometric addition of chiral reagents, which is requisite when employing traditional chiral auxiliaries. This method's utility is demonstrated in the total asymmetric syntheses of (+)-kurasoin B and analogs, and 12-(S)-HETE. Kurasoin B is a fungal-derived natural compound possessing moderate farnesyl transfer (FTase) inhibitive activity (IC50 = 58.7 μM). FTase catalyzes post-translation modifications of membrane-bound Ras proteins, which function in signal cell transduction that stimulates cell growth and division. The oncogenic nature of mutated Ras proteins is demonstrated by their commonality in human tumors. Thus, FTase inhibitors like (+)-kurasoin B possess potential as cancer chemotherapy leads. Derivatization may enable structure-activity-relationship studies and greater FTase inhibition activity to be found. 12-(S)-HETE, a metabolite from a 12-lipoxygenase pathway from arachidonic acid, has been found to participate in a large number of physiological processes. Its transient presence in natural tissues makes total synthesis an attractive avenue for obtaining sufficient quantities for further study. Five asymmetric syntheses of 12-(S)-HETE have been reported. Three require chiral resolutions of racemates, with the undesired enantiomers being discarded or used for other applications. Asymmetric PTC alkylation is also described for aryl acetates, whose products were enantioenriched through recrystallization. This technique is applied to a total synthesis of the anti-inflammatory drug (S)-Naproxen.
|
7 |
Total Synthesis of Bio-Active Macrolide Natural Products and Sulfinamide Based Ligands in Asymmetric CatalysisRevu, Omkar January 2015 (has links) (PDF)
The thesis entitled “Total synthesis of bio-active macrolide natural products and sulphonamide based ligands in asymmetric catalysis” is divided into two chapters.
First chapter of the thesis describes the total synthesis of bio-active macrolide natural products cladospolide A 1, seimatopolide A 2 and synthetic studies towards aetheramides A 3 and B 4 (Figure 1).
Figure 1: Bio-active macrolide natural products.
Section A of chapter 1 describes the enantiospecific total synthesis of cladospolide A (ent-1). Cladospolide A was isolated from three different sources such as culture filtrate of cladosporium fulvam FI-113, Fungus cladosporium tenuissimum and Fermentation broath of cladosporium sp. FT-0012. Cladospolide A is shown to inhibit the root growth of lettuce seedlings. Enantiospecific total synthesis of cladospolide A ent-1 was accomplished in 9% overall yield in 11 linear steps using D-ribose as a chiral pool precursor. Key reactions in the present approach include olefin cross metathesis and Yamaguchi macrolactonization reactions (Scheme 1).
Scheme 1: Total synthesis of cladospolide A (ent-1).
Section B of chapter 1 describes the use of furan as a surrogate for the E-but-2-ene-1, 4-dione unit in the total synthesis of seimatopolide A 2. Seimatopolide A 2 was isolated by Heip and co-workers from the
fungus Seimatosporium discosioides in 2012 and is shown to activate the γ-subtype peroxysome proliferator-activated receptors (PPAR-γ), which is a pivotal process in the type-2 diabetes. Total synthesis of ent-seimatopolide A was accomplished in 7.8% overall yield in 14 linear steps from furfural. Nagao acetate aldol and Shiina macrolactonization reactions were employed as key reactions for the synthesis of ent-seimatopolide A (ent-2) (Scheme 2).
Scheme 2: Stereoselective total synthesis of seimatopolide A (ent-2).
In section C of Chapter 1, studies towards the synthesis of aetheramides A 3 and B 4 are described. Aetheramides A 3 and B 4 are isolated by Müller’s group in 2012 from the novel myxobacterial genus “Aetherobacter”. Aetheramides are cyclic depsipeptides, which are shown to inhibit the HIV-I infection with IC50 values of ∼0.015 μM and cytostatic activity against human colon carcinoma (HCT-116) cells with IC50 values of 0.11 μM. Stereochemistry at two chiral centers present in the molecules is unassigned. The first approach (Scheme 3) relied on macrolactonization as the key step while the second approach (Scheme 4) relied on RCM to accomplish the macrolactonization. The required precursors were synthesized from elaboration of chiral furyl carbinol, while synthesis of the RCM precursor was accomplished employing the aldol reaction.
Scheme 3: Macrolactonization strategy for synthesis of 3 from chiral furyl carbinol.
Scheme 4: RCM strategy for synthesis of 3 from chiral furyl carbinol.
The successful synthesis of the macrolactone core of aetheramide A 1 is accomplished by employing the ring closing metathesis reaction to construct the C18-C19 bond. RCM precursor has been synthesized by the amidation of the amine derived from R-mandelic acid, while the acid fragment is synthesized from allyl trityl ether (Scheme 5).
Scheme 5: RCM strategy for synthesis of 3 from R-mandelic acid.
Second chapter of the thesis describes the synthesis and application of novel sulfinamide ligands in asymmetric catalysis. In section A of chapter 2, chiral 2-pyridylsulfinamides are shown to be effective catalysts in the alkylation of aryl and alkyl aldehydes with diethylzinc providing the corresponding alcohols
in excellent enantioselectivity. It was found that the chirality present at sulfur in the ligand is pivotal for the asymmetric induction (Scheme 6).
Scheme 6: Asymmetric alkylation of benzaldehyde with some of the 2-Pyridyl sulfinamide catalysts.
Second section of chapter 2 describes the synthesis and application of C2-symmetric bis-sulfinamides in Rh (I) catalyzed conjugate addition of PhB(OH)2 to enones. Chirality present at sulphur in sulfonamide as well as symmetry present in the ligand plays crucial role in the outcome of the reaction (Scheme 7).
Scheme 7: Asymmetric arylation of enones using C2-symmetric bis-sulfinamide/olefin ligands.
The thesis entitled “Total synthesis of bio-active macrolide natural products and sulphonamide based ligands in asymmetric catalysis” is divided into two chapters.
First chapter of the thesis describes the total synthesis of bio-active macrolide natural products cladospolide A 1, seimatopolide A 2 and synthetic studies towards aetheramides A 3 and B 4 (Figure 1).
Figure 1: Bio-active macrolide natural products.
Section A of chapter 1 describes the enantiospecific total synthesis of cladospolide A (ent-1). Cladospolide A was isolated from three different sources such as culture filtrate of cladosporium fulvam FI-113, Fungus cladosporium tenuissimum and Fermentation broath of cladosporium sp. FT-0012. Cladospolide A is shown to inhibit the root growth of lettuce seedlings. Enantiospecific total synthesis of cladospolide A ent-1 was accomplished in 9% overall yield in 11 linear steps using D-ribose as a chiral pool precursor. Key reactions in the present approach include olefin cross metathesis and Yamaguchi macrolactonization reactions (Scheme 1).
Scheme 1: Total synthesis of cladospolide A (ent-1).
Section B of chapter 1 describes the use of furan as a surrogate for the E-but-2-ene-1, 4-dione unit in the total synthesis of seimatopolide A 2. Seimatopolide A 2 was isolated by Heip and co-workers from the
fungus Seimatosporium discosioides in 2012 and is shown to activate the γ-subtype peroxysome proliferator-activated receptors (PPAR-γ), which is a pivotal process in the type-2 diabetes. Total synthesis of ent-seimatopolide A was accomplished in 7.8% overall yield in 14 linear steps from furfural. Nagao acetate aldol and Shiina macrolactonization reactions were employed as key reactions for the synthesis of ent-seimatopolide A (ent-2) (Scheme 2).
Scheme 2: Stereoselective total synthesis of seimatopolide A (ent-2).
In section C of Chapter 1, studies towards the synthesis of aetheramides A 3 and B 4 are described. Aetheramides A 3 and B 4 are isolated by Müller’s group in 2012 from the novel myxobacterial genus “Aetherobacter”. Aetheramides are cyclic depsipeptides, which are shown to inhibit the HIV-I infection with IC50 values of ∼0.015 μM and cytostatic activity against human colon carcinoma (HCT-116) cells with IC50 values of 0.11 μM. Stereochemistry at two chiral centers present in the molecules is unassigned. The first approach (Scheme 3) relied on macrolactonization as the key step while the second approach (Scheme 4) relied on RCM to accomplish the macrolactonization. The required precursors were synthesized from elaboration of chiral furyl carbinol, while synthesis of the RCM precursor was accomplished employing the aldol reaction.
Scheme 3: Macrolactonization strategy for synthesis of 3 from chiral furyl carbinol.
Scheme 4: RCM strategy for synthesis of 3 from chiral furyl carbinol.
The successful synthesis of the macrolactone core of aetheramide A 1 is accomplished by employing the ring closing metathesis reaction to construct the C18-C19 bond. RCM precursor has been synthesized by the amidation of the amine derived from R-mandelic acid, while the acid fragment is synthesized from allyl trityl ether (Scheme 5).
Scheme 5: RCM strategy for synthesis of 3 from R-mandelic acid.
Second chapter of the thesis describes the synthesis and application of novel sulfinamide ligands in asymmetric catalysis. In section A of chapter 2, chiral 2-pyridylsulfinamides are shown to be effective catalysts in the alkylation of aryl and alkyl aldehydes with diethylzinc providing the corresponding alcohols
in excellent enantioselectivity. It was found that the chirality present at sulfur in the ligand is pivotal for the asymmetric induction (Scheme 6).
Scheme 6: Asymmetric alkylation of benzaldehyde with some of the 2-Pyridyl sulfinamide catalysts.
Second section of chapter 2 describes the synthesis and application of C2-symmetric bis-sulfinamides in Rh (I) catalyzed conjugate addition of PhB(OH)2 to enones. Chirality present at sulphur in sulfonamide as well as symmetry present in the ligand plays crucial role in the outcome of the reaction (Scheme 7).
Scheme 7: Asymmetric arylation of enones using C2-symmetric bis-sulfinamide/olefin ligands.
|
Page generated in 0.1169 seconds