Spelling suggestions: "subject:"asymptotic dde valeur propre"" "subject:"asymptotic dee valeur propre""
1 |
Modèles d'impédance généralisée en diffraction inverseChaulet, Nicolas 27 November 2012 (has links) (PDF)
Le but général de cette thèse est d'exploiter des modélisations asymptotiques pour la résolution de problèmes de diffraction inverse en électromagnétisme. Nous nous intéressons plus particulièrement au cas des conditions d'impédance généralisée qui modélisent notamment des matériaux fortement absorbants ou des revêtements de faible épaisseur. L'expression "impédance généralisée" signifie que la condition au bord fait intervenir un opérateur surfacique. Les conditions dites d'impédance classique entrent dans cette famille de conditions aux bord, dans ce cas, l'opérateur surfacique se réduit à la multiplication par une fonction. Dans le cadre des problèmes inverses, l'utilisation de modèles approchés permet de simplifier aussi bien la résolution numérique que l'analyse mathématique. De nombreux travaux ont été menés en diffraction inverse sur l'utilisation d'une condition d'impédance classique, nous les avons étendus pour des opérateurs surfaciques plus complexes faisant intervenir des dérivées tangentielles. Une partie importante de la thèse est consacrée à la mise en oeuvre des méthodes d'optimisation pour retrouver un obstacle ainsi que les paramètres définissant l'opérateur d'impédance. Nous présentons en particulier un calcul de dérivée de forme dans le cas où les équations de l'électromagnétisme se simplifient en une équation scalaire, nous étendons ensuite ce calcul aux équations de Maxwell vectorielles. Des exemples numériques de reconstruction de forme et de paramètres d'impédance viennent illustrer l'applicabilité des méthodes d'optimisation à notre problème inverse. Afin de compléter cette étude, nous avons utilisé une méthode qualitative - la méthode de factorisation - pour identifier un objet diffractant caractérisé par une condition d'impédance généralisée. Enfin, en relation avec les méthodes qualitatives, nous nous sommes penché sur l'utilisation des valeurs propres de transmission associées au problème de diffraction par des couches minces pour obtenir des informations sur la couche. Dans ce but, nous avons calculé et justifié le développement asymptotique de la première valeur propre de transmission intérieure par rapport à la faible épaisseur du revêtement. Ce développement donne une manière simple de calculer l'épaisseur du revêtement à partir du champ diffracté pour plusieurs fréquences.
|
2 |
Étude de problèmes différentiels elliptiques et paraboliques sur un graphe / A qtudy of elliptic and parabolic differential problems on graphsVasseur, Baptiste 06 February 2014 (has links)
Après une présentation des notations usuelles de la théorie des graphes, on étudie l'ensemble des fonctions harmoniques sur les graphes, c'est à dire des fonctions dont le laplacien est nul. Ces fonctions forment un espace vectoriel et sur un graphe uniformément localement fini, on montre que cet espace vectoriel est soit de dimension un, soit de dimension infinie. Lorsque le graphe comporte une infinité de cycles, ce résultat tombe en défaut et on exhibe des exemples qui montrent qu'il existe un graphe sur lequel les harmoniques forment un espace vectoriel de dimension n, pour tout n. Un exemple de graphe périodique est également traité. Ensuite, toujours pour le laplacien, on étudie plus précisément sur les arbres uniformément localement finis les valeurs propres dont l'espace propre est de dimension infini. Dans ce cas, il est montré que l'espace propre contient un sous-espace isomorphe à l'ensemble des suites réelles bornées. Une inégalité concernant le spectre est donnée dans le cas spécial où les arêtes sont de longueur un. Des exemples montrent que ces inclusions sont optimales. Dans le chapitre suivant, on étudie le comportement asymptotique des valeurs propres pour des opérateurs elliptiques d'ordre 2 quelconques sous des conditions de Kirchhoff dynamiques. Après réécriture du problème sous la forme d'un opérateur de Sturm-Liouville, on écrit le problème de façon matricielle. Puis on trouve une équation caractéristique dont les zéros correspondent aux valeurs propres. On en déduit une formule pour l'asymptotique des valeurs propres. Dans le dernier chapitre, on étudie la stabilité de solutions stationnaires pour certains problèmes de réaction-diffusion où le terme de non linéarité est polynomial. / After a quick presentation of usual notations for the graph theory, we study the set of harmonic functions on graphs, that is, the functions whose laplacian is zero. These functions form a vectorial space. On a uniformly locally finite tree, we shaw that this space has dimension one or infinity. When the graph has an infinite number of cycles, this result change and we describe some examples showing that there exists a graph on which the harmonic functions form a vectorial space of dimension n, for all n. We also treat the case of a particular periodic graph. Then, we study more precisely the eigenvalues of infinite dimension. In this case, the eigenspace contains a subspace isomorphic to the set of bounded sequences. An inequality concerning the spectral is given when edges length is equal to one. Examples show that these inclusions are optimal. We also study the asymptotic behavior of eigenvalues for elliptic operators under dynamical Kirchhoff node conditions. We write the problem as a Sturm-Liouville operator and we transform it in a matrix problem. Then we find a characteristic equation whose zeroes correspond to eigenvalues. We deduce a formula for the asymptotic behavior. In the last chapter, we study the stability of stationary solutions for some reaction-diffusion problem whose the non-linear term is polynomial.
|
3 |
Quelques asymptotiques spectrales pour le Laplacien de Dirichlet : triangles, cônes et couches coniques / A few spectral asymptotics for the Dirichlet Laplacian : triangles, cones and conical layersOurmières-Bonafos, Thomas 01 October 2014 (has links)
Cette thèse est consacrée à l'étude du spectre de l'opérateur de Laplace avec conditions de Dirichlet dans différents domaines du plan ou de l'espace. Dans un premier temps on s'intéresse à des triangles asymptotiquement plats et des cônes de petite ouverture. Ces problèmes admettent une reformulation semi-classique et nous donnons des développements asymptotiques à tout ordre des premières valeurs et fonctions propres. Ce type de résultat est déjà connu pour des domaines minces à profil régulier. Pour les triangles et les cônes, on prouve que le problème admet maintenant deux échelles. Dans un second temps, on étudie une famille de couches coniques indexées par leur ouverture. Là encore, on s'intéresse à la limite semi-classique quand l'ouverture tend vers zéro: on donne un développement asymptotique à deux termes des premières valeurs propres et on démontre un résultat de localisation des fonctions propres associées. Nous donnons également, à ouverture fixée, un équivalent du nombre de valeurs propres sous le seuil du spectre essentiel. / This thesis deals with the spectrum of the Dirichlet Laplacian in various two or three dimensional domains. First, we consider asymptotically flat triangles and cones with small aperture. These problems admit a semi-classical formulation and we provide asymptotic expansions at any order for the first eigenvalues and the associated eigenfunctions. These type of results is already known for thin domains with smooth profiles. For triangles and cones, we show that the problem admits now two different scales. Second, we study a family of conical layers parametrized by their aperture. Again, we consider the semi-classical limit when the aperture tends to zero: We provide a two-term asymptotics of the first eigenvalues and we prove a localization result about the associated eigenfunctions. We also estimate, for each chosen aperture, the number of eigenvalues below the threshold of the essential spectrum.
|
4 |
Sur le spectre de l'opérateur de Schrödinger magnétique dans un domaine diédralPopoff, Nicolas 20 November 2012 (has links) (PDF)
Cette thèse analyse le spectre d'opérateurs de Schrödinger avec champ magnétique constant dans des ouverts de type diédraux. Pour comprendre l'influence d'une arête courbe sur la première valeur propre de l'opérateur dans la limite semi-classique, il faut connaître le bas du spectre de l'opérateur de Schrödinger magnétique avec champ constant sur un dièdre infini. Par transformation de Fourier ce problème se ramène à l'étude d'une famille d'opérateurs à paramètre sur un secteur infini. On calcule le spectre essentiel de ces opérateurs sur le secteur et on montre que dans certains cas il y a des valeurs propres discrètes sous le spectre essentiel. Par comparaison avec des opérateurs de Sturm-Liouville singuliers sur le demi-axe on obtient des majorations du bas du spectre de l'opérateur sur le dièdre : pour un angle d'ouverture assez petit et certaines orientations du champ magnétique, celui-ci est strictement inférieur aux quantités spectrales issues du cas régulier. Finalement on applique ces résultats à l'opérateur de Schrödinger avec champ magnétique constant et petit paramètre dans des domaines bornés de l'espace possédant des arêtes courbes. Pour déterminer une asymptotique de la première valeur propre dans la limite semi-classique, on construit des quasi-modes près de l'arête à l'aide des fonctions propres du problème à paramètre sur le secteur. En utilisant une partition du domaine selon que l'on soit près de l'arête ou du bord régulier, on obtient le premier terme de l'asymptotique pour diverses orientations du champ magnétique et on montre dans certains cas que la première valeur propre est inférieure aux valeurs propres associées à des ouverts réguliers.
|
Page generated in 0.1308 seconds