• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of e-TDR to achieve precise time synchronization and controlled asynchronization of remotely located signals

Sripada, Aparna 14 January 2014 (has links)
Time Domain Reflectometer (TDR) measures the electrical length of a cable from the applied end to the location of an impedance change. An impedance change causes a portion of the applied signal to reflect back based on the value of its reflection coefficient. The time of flight (TOF) between the applied and reflected wave is computed and multiplied with previously determined signal propagation velocity to determine the location of the impedance change. We intentionally open terminate the output end of the cable which makes the reflection coefficient be maximum (=1) to measure its electrical length. Conventional TDRs designed for testing integrity of long cables use various closed pulse shaped test signals i.e. the half sine wave and the Gaussian pulse, that disperse (change shape) and change velocity while propagation along the cable. Quoting Dr. Leon Brillouin’s comments on electromagnetic energy propagation [10], “in a vacuum, all waves (e.g. frequencies) propagate at the same velocity, hence withoutdistortion, whereas in a dispersive lossy media, except for an infinitely long sinusoidal waveform, distortion will occur due to frequency dependent velocity.” This signal distortion generally degrades the accuracy of the measurement of the signal’s TOF. We discuss here an Enhanced Resolution Time Domain Reflectometer (e-TDR). The enhanced resolution is due to a newly discovered signal called SPEEDY DELIVERY (SD) by Dr. Robert Flake at The University of Texas at Austin (US PATENT 6,441,695 B1 issued in August 27, 2002). This SD signal has a propagation velocity that is a programmable constant and this signal preserves its shape during propagation through dispersive lossy media (DLM). This signal behavior allows us to use ‘e-TDR’ in applications where remotely located signals need to be synchronized or asynchronized precisely. Potential applications include signal based synchronization of devices like sensors connected in a network. Since the cable carrying data from sensors at discrete and remote locations to a collecting center have different electrical lengths, it is necessary to precisely offset the timestamp of the incoming signal from these sensors to allow accurate data fusion. Our prototype is capable of synchronizing signals 1,200 ft (~ 400 m) apart with sub-nanosecond resolution. / text
2

Méthodes itératives à retard pour architecture massivement parallèles / Iterative methods with retards for massively parallel architecture

Zhang, Hanyu 29 September 2016 (has links)
Avec l'avènement de machine parallèles multi-coeurs, de nombreux algorithmes doivent être modifiés ou conçus pour s'adapter à ces architectures. Ces algorithmes consistent pour la plupart à diviser le problème original en plusieurs petits sous-problèmes et à les distribuer sur les différentes unités de calcul disponibles. La résolution de ces petits sous-problèmes peut être exécutée en parallèle, des communications entre les unités de calcul étant indispensables pour assurer la convergence de ces méthodes.Ma thèse propose de nouveaux algorithmes parallèles pour résoudre de grands systèmes linéaires.Les algorithmes proposés sont ici basés sur la méthode du gradient. Deux points fondamentaux de la méthode du gradient sont la direction de descente de la solution approchée et la valeur du pas de descente, qui détermine la modification à effectuer à chaque itération. Nous proposons dans cette thèse de calculer la direction et le pas indépendamment et localement sur chaque unité de calcul, ce qui nécessite moins de synchronisation entre les processeurs, et par suite rend chaque itération simple et plus rapide, et rend son extension dans un contexte asynchrone possible.Avec les paramètres d'échelle appropriés pour le pas des longueurs, la convergence peut être démontrée pour les deux versions synchrone et asynchrone des algorithmes. De nombreux tests numériques illustrent l’efficacité de ces méthodes.L'autre partie de ma thèse propose d'utiliser une méthode d'extrapolation pour accélérer les méthodes itératives classiques avec retard. Bien que les séquences de vecteur générées par des méthodes itératives asynchrones générales classiques ne peut être accélérée, nous sommes en mesure de démontrer que, une fois le modèle de calcul et de communication fixés au cours de l’exécution, la séquence de vecteurs générés peut être accéléré. De nombreux tests numériques illustrent l’efficacité de ces accélérations dans le cas des méthodes avec retard. / With the increase of architectures composed of multi-cores, many algorithms need to revisited and be modified to exploit the power of these new architectures. These algorithms divide the original problem into “small pieces” and distribute these pieces to different processors at disposal, thus communications among them are indispensible to assure the convergence. My thesis mainly focus on solving large sparse systems of linear equations in parallel with new methods. These methods are based on the gradient methods. Two key parameters of the gradient methods are descent direction and step-length of descent for each iteration. Our methods compute the directions locally, which requires less synchronization and computation, leading to faster iterations and make easy asynchronization possible. Convergence can be proved in both synchronized or asynchronized cases. Numerical tests demonstrate the efficiency of these methods. The other part of my thesis deal with the acceleration of the vector sequences generated by classical iterative algorithms. Though general chaotic sequences may not be accelerated, it is possible to prove that with any fixed retard pattern, then the generated sequence can be accelerated. Different numerical tests demonstrate its efficiency.
3

Reliable Communications under Limited Knowledge of the Channel

Yazdani, Raman Unknown Date
No description available.

Page generated in 0.1163 seconds