• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 12
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Novel Roles of Ataxia Telangiectasia Mutated (ATM) in DNA Repair and Tumor Suppression

Yamamoto, Kenta January 2015 (has links)
Mammalian cells possess a variety of different DNA repair pathways, which work together to safeguard genomic integrity upon encountering different types of DNA damage. Among all lesions, DNA double-strand breaks (DSBs) are most toxic and, if left unrepaired, results in loss of genetic information and genomic instability- a hallmark of tumorigenesis. Ataxia Telangiectasia Mutated (ATM) is a protein kinase, a master regulator of the DNA damage response, and is activated upon the formation of DSBs. ATM senses DNA DSBs through its accessory proteins and functions as a transducer of the DNA damage response (DDR), which entails the activation of genes involved in DNA repair, cell cycle checkpoint, and apoptosis. Consequently, loss of ATM results in increased genomic instability and compromised checkpoint regulation. Moreover, loss of ATM has been reported in various human cancers, and Atm-deficient mice uniformly develop thymic lymphomas, highlighting its role as a tumor suppressor. Although ATM has been extensively studied, much of its known functions to date pertained to its kinase activity, and the structural function of ATM remains elusive. To investigate whether ATM possesses structural functions beyond its kinase activity, we generated a mouse model expressing kinase-dead (KD) ATM protein. Intriguingly, while Atm-/- are viable, AtmKD/KD and AtmKD/- mice were embryonic lethal and AtmKD/KD and AtmKD/- cells displayed greater genomic instability compared to ATM-null cells, suggesting that the presence of the ATM KD protein blocks additional DNA repair pathways that are not affected in ATM-null cells. In this context, we identified defects in homologous recombination, resolution of Camptothecin (CPT)-induced Topoisomerase-I lesions, and replication progression specifically in AtmKD/- cells beyond those observed in Atm-/-. Mouse model expressing KD ATM (AtmKD/-) in hematopoietic stem cells (HSCs) developed thymic lymphomas faster and more frequently than the corresponding model with the ATM-null HSCs, which was associated with increased genomic instability and loss of tumor-suppressor Pten. In collaboration with others, we showed that the majority of tumor-associated ATM mutations reported in TCGA are missense mutations and are highly enriched in the kinase domain, while Ataxia-Telangiectasia (A-T) associated germline ATM mutations are almost always truncating mutations leading to complete loss of ATM protein. This result suggests that ATM KD protein might be expressed in a significant fraction of human cancer. These results, for the first time, identified a previously unknown phosphorylation-dependent, structural function of ATM in the maintenance of genomic integrity and tumor suppression. Furthermore, the tumorigenicity and vulnerability to particular DNA damaging agents caused by the expression of the ATM KD protein relative to the loss of ATM highlight the importance of distinguishing the types of ATM mutations in tumors, and provide novel insights into the clinical use of specific ATM kinase inhibitors, as well as the prognosis and treatments of ATM-mutated cancers. ATM has been reported to be frequently inactivated in human B-cell lymphomas, including up to 50% Mantle Cell Lymphoma (MCL), which represents around 6% of all Non-Hodgkins Lymphomas (NHLs). MCL is characterized by the recurrent t(11;14)(q13;q32) translocation, which juxtaposes CCND1/BCL-1 to the IGH enhancer, leading to deregulated expression of CyclinD1 (CCND1). However, CyclinD1 overexpression in B cells alone is not sufficient to induce MCL in mouse models, and the role of ATM in the suppression of B-cell lymphomas is not well understood, in part due to the lack of ATM-deficient mature B-cell lymphoma models. To address this, we generated a mouse model that combines conditional deletion of ATM specifically in early progenitor B-cells via Mb1cre, and overexpressing CyclinD1 in lymphoid cells via EµCyclinD1 transgene. While ATM loss alone resulted in the development of indolent, clonal, mature B-cell lymphoma, combined ATM-loss and CyclinD1 overexpression accelerated and increased the incidence of B-cell lymphoma. Furthermore, ATM-loss combined with CyclinD1 overexpression led to greater genomic instability and the expansion of naïve ATM-deficient B-cells in the spleen. This study, for the first time, developed an ATM-deficient B-cell lymphoma model and demonstrated a synergistic function of ATM and CyclinD1 in pre-GC B-cell proliferation and lymphomagenesis. Furthermore, the mice described here provide a prototypic animal model to study the pathogenesis of human MCL, for which there are no suitable mouse models.
12

A Regulatory Role for ATM in Suppression of Mre11-Dependent DNA Degradation and Microhomology-Mediated End Joining

Rahal, Elias Adel January 2009 (has links)
ATM is the defective kinase in the neurodegenerative disorder ataxia telangiectasia. This kinase is associated with DNA double-strand break (DSB) repair and cell cycle control. Our laboratory previously demonstrated elevated levels of deletions and error-prone double-strand break repair via microhomology-mediated end joining (MMEJ) in ATM-deficient (A-T) extracts when compared to controls (wtATM+). To assess the involvement of enhanced nuclease activities in A-T extracts we studied the stability of DNA duplex substrates in A-T and control nuclear extracts under DSB repair conditions. We observed a marked shift in detection from full-length products to shorter products in A-T extracts. Addition of purified ATM to A-T nuclear extracts restored full-length product detection. This repression of degradation by ATM was dependent on its kinase activities. These results demonstrated a role for ATM in suppressing the degradation of DNA ends possibly through inhibiting nucleases implicated in MMEJ such as Mre11. Therefore, we assessed DNA end-stability in Mre11-depleted nuclear extracts and in extracts treated with the Mre11 nuclease inhibitor, Mirin. This resulted in decreased DNA degradation in both control and A-T extracts. Knockdown of Mre11 levels also led to an enhancement of DNA end-stability in nuclear extracts. Examining MMEJ levels by employing an in vivo reporter assay system revealed a decline in this pathway in Mre11-knockdown cells and in those treated with Mirin. These results signify a role for the Mre11 nuclease in MMEJ in mammalian cells and indicate a regulatory function for ATM in the control of error-prone DSB repair and preservation of DNA end-stability at a break.
13

Verification and rectification of cell type-specific splicing of a Seckel syndrome-associated ATR mutation using iPS cell model / iPS細胞モデルを用いたセッケル症候群関連ATR遺伝子変異の細胞種特異的スプライシングの確認及び矯正

Ichisima, Jose 23 July 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医科学) / 甲第22006号 / 医科博第104号 / 新制||医科||7(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 井上 治久, 教授 伊佐 正, 教授 妻木 範行 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
14

Ataxia-Telangiectasia Mutated Kinase Deficiency Alters the Autophagic Response During Chronic Myocardial Infarction

Wingard, Mary, Dalal, Dr. Suman, Thrasher, Patsy, Daniel, Laura, Singh, Dr. Mahipal, Singh, Dr. Krishna 12 April 2019 (has links)
Background: Environmental and endogenous stresses induce genomic DNA damage. In order to combat cellular assaults and maintain genomic integrity, reparative processes including DNA damage repair (DDR) and autophagy are activated. A key protein involved in DDR is ataxia telangiectasia mutated kinase (ATM). Mutations in ATM gene cause a multi-systemic disease called ataxia telangiectasia. Approximately 1.4-2.0% of the population has heterozygous mutation in ATM gene, which associates with enhanced susceptibility to cancer and ischemic heart disease. Autophagy, a conserved catabolic process, functions to maintain genomic stability by the sequestration and removal of misfolded proteins and damaged organelles. Dysregulation of autophagy contributes to the pathogenesis of many diseases including heart disease. Previous work from our lab has demonstrated autophagic impairment in the myocardium of ATM deficient mice during an acute phase (4 hr) of myocardial infarction (MI). The objective of this study was to examine the role of ATM deficiency in autophagic impairment during a chronic phase (28 days) post-MI. Methods: Wildtype (WT) and ATM heterozygous knockout (hKO) mice underwent MI by the ligation of the left anterior descending artery. Expression and activity of proteins associated with autophagy were examined in the infarct left ventricular tissue 28 days post-MI using western blot analyses. The data were analyzed using ANOVA followed by Student-Newman-Keuls test. A p-value of Results: The ratio of microtubule-associated protein light chain 3 (LC3-II-to-LC3-I; an indicator of autophagic turnover) lower in hKO-sham vs WT-sham. MI led to significant decrease in this ratio in WT-MI vs WT-sham. Protein levels of p62 (an autophagic transport protein) remained unchanged among the four groups. Expression levels of beclin-1 (aids in the formation of the autophagophore) were similarly increased in both MI groups vs their sham controls. Levels of mature cathepsin D (a lysosomal protease involved in lysosomal degradation of misfolded proteins) were significantly higher in WT-MI vs WT-sham group. Interestingly, cathepsin D levels were significantly lower in hKO-MI vs WT-MI group. Activation of mTOR (a coordinator of autophagy, cell growth and metabolism) was significantly higher in hKO-MI, not in WT-MI, vs hKO-sham group. Activation of AMPK (a sensor and regulator of cellular energy homeostasis) was higher in WT-MI, not in hKO-MI, vs WT-sham. Conclusion: Thus, ATM deficiency alters autophagic response in the heart chronic post-MI.
15

Differential DNA Damage Responses in p53 Proficient and Deficient Cells: Cisplatin-Induced Nuclear Import of XPA Is Independent of ATR Checkpoint in p53-Deficient Lung Cancer Cells

Li, Zhengke, Musich, Phillip R., Zou, Yue 10 June 2011 (has links)
Nucleotide excision repair (NER) and ataxia telangiectasia mutated (ATM)/ATR (ATM- and RAD3-related) NA damage checkpoints are among the major pathways that affect the chemotherapeutic efficiency of the anticancer rug cisplatin. Xeroderma pigmentosum group A (XPA) protein plays a crucial role in NER including both global enome repair (GG-NER) and transcription-coupled repair (TC-NER) subpathways, and has been a potential target for mproving cisplatin therapeutic effects. We report here that XPA translocates from the cytosol into the nucleus after NA damage induced by UV irradiation and cisplatin, a mimetic of UV damage, in human cells with or without p53 deficiency. However, the damage-induced response of XPA nuclear import was significantly slower in p53-deficient cells than in p53-proficient cells. We also found that while XPA is imported into the nucleus upon cisplatin or UV damage in an ATR-dependent manner in p53-proficient A549 lung cancer cells, the ATR checkpoint pathway has no effect on the XPA nuclear import in p53-deficient H1299 lung cancer cells. Similarly, the XPA nuclear translocation is not regulated by ATM checkpoint or by p38MAPK/MK2 either. Our findings suggest that NER is independent on the major DNA damage checkpoint pathways in H1299 (p53-/-) cells and that DNA damage responses are mechanistically different between p53-proficient and p53-deficient cells. Our results also highlight the possibility of selectively targeting XPA nuclear import as a way to sensitize cisplatin anticancer activity, but targeting ATR/ATM-dependent checkpoints may not be helpful in killing p53-deficient cancer cells.
16

Ataxia Telangiectasia Mutated Kinase Deficiency Impairs the Autophagic Response Early During Myocardial Infarction

Thrasher, Patsy R., Scofield, Stephanie L.C., Dalal, Suman, Crawford, Claire C., Singh, Mahipal, Singh, Krishna 01 July 2018 (has links)
Ataxia telangiectasia mutated kinase (ATM) is activated in response to DNA damage. We have previously shown that ATM plays a critical role in myocyte apoptosis and cardiac remodeling after myocardial infarction (MI). Here, we tested the hypothesis that ATM deficiency results in autophagic impairment in the heart early during MI. MI was induced in wild-type (WT) and ATM heterozygous knockout (hKO) mice by ligation of the left anterior descending artery. Structural and biochemical parameters of the heart were measured 4 h after left anterior descending artery ligation. M-mode echocardiography revealed that MI worsens heart function, as evidenced by reduced percent ejection fraction and fractional shortening in both groups. However, MI-induced increase in left ventricular end-diastolic and end-systolic diameters and volumes were significantly lower in hKO hearts. ATM deficiency resulted in autophagic impairment during MI, as evidenced by decreased microtubule-associated protein light chain 3-II increased p62, decreased cathepsin D protein levels, and increased aggresome accumulation. ERK1/2 activation was only observed in WT-MI hearts. Activation of Akt and AMP-activated protein kinase (AMPK) was lower, whereas activation of glycogen synthase kinase (GSK)-3β and mammalian target of rapamycin (mTOR) was higher in hKO-MI hearts. Inhibition of ATM using KU-55933 resulted in autophagic impairment in cardiac fibroblasts, as evidenced by decreased light chain 3-II protein levels and formation of acidic vesicular organelles. This impairment was associated with decreased activation of Akt and AMPK but enhanced activation of GSK-3 β and mTOR in KU-55933-treated fibroblasts. Thus, ATM deficiency results in autophagic impairment in the heart during MI and cardiac fibroblasts. This autophagic impairment may occur via the activation of GSK-3 β and mTOR and inactivation of Akt and AMPK. NEW & NOTEWORTHY Ataxia telangiectasia mutated kinase (ATM) plays a critical role in myocyte apoptosis and cardiac remodeling after myocardial infarction (MI). Here, we provide evidence that ATM deficiency results in autophagic impairment during MI. Further investigation of the role of ATM in autophagy post-MI may provide novel therapeutic targets for patients with ataxia telangiectasia suffering from heart disease.
17

Ataxia-Telangiectasia Mutated Kinase: Role in Myocardial Remodeling

Thrasher, Patsy, Singh, Mahipal, Singh, Krishna 01 January 2017 (has links)
Ataxia-telangiectasia mutated kinase (ATM) is a serine/threonine kinase. Mutations in the ATM gene cause a rare autosomal multisystemic disease known as Ataxia-telangiectasia (AT). Individuals with mutations in both copies of the ATM gene suffer from increased susceptibility to ionizing radiation, predisposition to cancer, insulin resistance, immune deficiency, and premature aging. Patients with one mutated allele make-up ~1.4 to 2% of the general population. These individuals are spared from most of the symptoms of the disease. However, they are predisposed to developing cancer or ischemic heart disease, and die 7-8 years earlier than the non-carriers. DNA double-strand breaks activate ATM, and active ATM is known to phosphorylate an extensive array of proteins involved in cell cycle arrest, DNA repair, and apoptosis. The importance of ATM in the regulation of DNA damage response signaling is fairly well-established. This review summarizes the role of ATM in the heart, specifically in cardiac remodeling following β-adrenergic receptor stimulation and myocardial infarction.
18

Regulation of innate immunity by DNA damage signaling

Harbort, Christopher 16 May 2017 (has links)
Neutrophile sind Zellen des Immunsystems von Säugetieren. Ihre zerstörerische Kraft spielt eine essentielle Rolle bei der Bekämpfung von Mikroorganismen, birgt aber auch das Potential erheblicher Kollateralschäden. Um chronische Entzündungen zu vermeiden, müssen diese Zellen streng reguliert werden. Die Neutrophilen selber nehmen an dieser Regulierung durch das Freisetzen von pro- und antiinflammatorischen Signalen Teil, unter anderem produzieren sie Zytokine oder initiieren rechtzeitig die Apoptose. Ein Eckpfeiler der Regulierung dieser Funktionen ist der oxidative Burst, bei dem Neutrophile reaktive Sauerstoffspezies (ROS) bilden. Die molekularen Ziele von ROS, welche diese Mechanismen regulieren, sind nicht alle identifiziert. Wir haben ataxia-telangiectasia mutated (ATM) Kinase, ein Regulator der DNA-Schadensantwort (DDR), als einen ROS-abhängigen Modulator von Neutrophilen identifiziert. Mutationen in ATM führen zu der Erkrankung Ataxia Telangiectasia (AT). AT Patienten leiden nicht nur unter den Folgen der fehlerhaften DNA-Reparatur sondern zeigen auch inflammationsassoziierte Krankheitserscheinigungen. Diese Beobachtung veranlasste uns, die Neutrophilen von AT Patienten genauer zu untersuchen. Wir zeigen, dass Neutrophile von AT Patienten erhöhte Menge an Zytokinen produzieren und Apoptose verzögern. Wir zeigen auch, dass DNA Schaden die Zytokinproduktion unterdrückt und Apoptose durch einen Mechanismus, der ATM, p38, und Chk2 verwendet initiiert. ROS sind notwendig für die endogene Regulierung dieser Prozesse. Diese Arbeit enthüllt einen neuartigen Mechanismus der Regulierung von Neutrophilen und etabliert die DDR als ein Ziel der ROS-gesteuerten Immunmodulation. Im Zusammenhang wird auch gezeigt, dass dysregulierte Neutrophilenaktivitäten einem inflammatorischen Phänotyp in AT zugrundeliegen könnte. Wir glauben, dass Entzündung eine treibende Kraft hinter Teilen der Pathologie von AT sein könnte und somit ein Ziel für klinische Intervention darstellt. / Neutrophils are cells of the mammalian innate immune system whose inflammatory functions are essential for microbial clearance but cause collateral tissue damage. Inflammation is regulated by both pro- and anti-inflammatory signals, including cytokine production and initiation of apoptosis. A cornerstone of the regulation of these functions is the oxidative burst, by which neutrophils generate reactive oxygen species (ROS). The downstream targets of ROS responsible for regulating these functions are not fully identified. We have identified ataxia telangiectasia mutated (ATM) kinase, a master regulator of the DNA damage response (DDR), as a ROS-dependent modulator of neutrophil responses. Mutations in ATM cause the disease Ataxia-telangiectasia (AT). In addition to disorders resulting from defective DNA repair, AT patients suffer from symptoms linked to inflammation, leading us to examine their neutrophil responses. We report that neutrophils from AT patients overproduce pro-inflammatory cytokines and delay apoptosis. We further show that DNA damage in neutrophils suppresses cytokine production and can initiate apoptosis via a mechanism involving ATM, p38, and Chk2. Furthermore, the oxidative burst was required for activation of ATM to regulate these processes.. This work reveals a novel mechanism for the regulation of neutrophil functions, establishing the DDR as a mediator of immune regulation by ROS. Furthermore, it indicates that neutrophil dysregulation may underlie chronic inflammation in AT patients. We propose that inflammation may be a driving force behind some of the pathology of AT, providing a potential target for clinical intervention for some symptoms of this currently untreatable disease.
19

ATM suppresses c-Myc overexpression in the mammary epithelium in response to estrogen / ATMは乳腺上皮細胞においてエストロゲンに応答したc-Mycの過剰発現を抑制する

Najnin, Rifat Ara 23 March 2023 (has links)
付記する学位プログラム名: 充実した健康長寿社会を築く総合医療開発リーダー育成プログラム / 京都大学 / 新制・課程博士 / 博士(医学) / 甲第24520号 / 医博第4962号 / 新制||医||1065(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 生田 宏一, 教授 万代 昌紀, 教授 松田 文彦 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
20

ピリミジン合成酵素阻害による核内poly(A)⁺ RNA代謝への影響解析

三宅, 俊太郎 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(生命科学) / 甲第24753号 / 生博第494号 / 新制||生||66(附属図書館) / 京都大学大学院生命科学研究科統合生命科学専攻 / (主査)教授 片山 高嶺, 教授 高田 穣, 教授 原田 浩 / 学位規則第4条第1項該当 / Doctor of Philosophy in Life Sciences / Kyoto University / DFAM

Page generated in 0.2986 seconds