• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 242
  • 26
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 307
  • 307
  • 297
  • 70
  • 67
  • 60
  • 48
  • 45
  • 36
  • 32
  • 29
  • 29
  • 29
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Geographic characteristics of circulation patterns and features in the South Atlantic and South Indian Oceans using satellite remote sensing

Meeuwis, June Myrtle 10 April 2014 (has links)
D.Litt. et Phil. / Please refer to full text to view abstract
292

A multi-dimensional spectral description of ocean variability with applications

Wortham, Cimarron James Lemuel, IV January 2013 (has links)
Thesis (Ph. D.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), February 2013. / "February 2013." Cataloged from PDF version of thesis. / Includes bibliographical references (p. 175-184). / Efforts to monitor the ocean for signs of climate change are hampered by ever-present noise, in the form of stochastic ocean variability, and detailed knowledge of the character of this noise is necessary for estimating the significance of apparent trends. Typically, uncertainty estimates are made by a variety of ad hoc methods, often based on numerical model results or the variability of the data set being analyzed. We provide a systematic approach based on the four-dimensional frequency-wavenumber spectrum of low-frequency ocean variability. This thesis presents an empirical model of the spectrum of ocean variability for periods between about 20 days and 15 years and wavelengths of about 200-10,000 km, and describes applications to ocean circulation trend detection, observing system design, and satellite data processing. The horizontal wavenumber-frequency part of the model spectrum is based on satellite altimetry, current meter data, moored temperature records, and shipboard ADCP data. The spectrum is dominated by motions along a "nondispersive line". The observations considered are consistent with a universal [omega] -² power law at the high end of the frequency range, but inconsistent with a universal wavenumber power law. The model spectrum is globally varying and accounts for changes in dominant phase speed, period, and wavelength with location. The vertical structure of the model spectrum is based on numerical model results, current meter data, and theoretical considerations. We find that the vertical structure of kinetic energy is surface intensified relative to the simplest theoretical predictions. We present a theory for the interaction of linear Rossby waves with rough topography; rough topography can explain both the observed phase speeds and vertical structure of variability. The improved description of low-frequency ocean variability presented here will serve as a useful tool for future oceanographic studies. / by Cimarron James Lemuel Wortham, IV. / Ph.D.
293

A determination of air-sea gas exchange and upper ocean biological production from five noble gasses and tritiugenic helium-3

Stanley, Rachel H. R January 2007 (has links)
Thesis (Ph. D.)--Joint Program in Chemical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2007. / Includes bibliographical references (p. 215-225). / The five noble gases (helium, neon, argon, krypton, and xenon) are biologically and chemically inert, making them ideal oceanographic tracers. Additionally, the noble gases have a wide range of solubilities and molecular diffusivities, and thus respond differently to physical forcing. Tritium, an isotope of hydrogen, is useful in tandem with its daughter helium-3 as a tracer for water mass ages. In this thesis, a fourteen month time-series of the five noble gases, helium-3 and tritium was measured at the Bermuda Atlantic Time-series Study (BATS) site. The time-series of five noble gases was used to develop a parameterization of air-sea gas exchange for oligotrophic waters and wind speeds between 0 and 13 m s-1 that explicitly includes bubble processes and that constrains diffusive gas exchange to ± 6% and complete and partial air injection processes to ± 15%. Additionally, the parameterization is based on weeks to seasonal time scales, matching the time scales of many relevant biogeochemical cycles. The time-series of helium isotopes, tritium, argon, and oxygen was used to constrain upper ocean biological production. Specifically, the helium flux gauge technique was used to estimate new production, apparent oxygen utilization rates were used to quantify export production, and euphotic zone seasonal cycles of oxygen and argon were used to determine net community production. The concurrent use of these three methods allows examination of the relationship between the types of production and begins to address a number of apparent inconsistencies in the elemental budgets of carbon, oxygen, and nitrogen. / by Rachel H.R. Stanley. / Ph.D.
294

Wind, sea ice, inertial oscillations and upper ocean mixing in Marguerite Bay, Western Antarctic Peninsula : observations and modeling

Hyatt, Jason January 2006 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2006. / Includes bibliographical references. / Two years of moored oceanographic and automatic weather station data which span the winter ice seasons of 2001-2003 within Marguerite Bay on the western Antarctic Peninsula (wAP) shelf were collected as part of the Southern Ocean Global Ocean Ecosystems Dynamics program. In order to characterize the ice environment in the region, a novel methodology is developed for determining ice coverage, draft and velocity from moored upward-looking acoustic Doppler current profiler data. A linear momentum balance shows the importance of internal ice stresses in the observed motion of the ice pack. Strong inertial, not tidal, motions were observed in both the sea ice and upper ocean. Estimates of upward diapycnal fluxes of heat and salt from the Upper Circumpolar Deep Water to the surface mixed layer indicate almost no contribution from double diffusive convection. A one-dimensional vertical mixed layer model adapted for investigation of mixing beneath an ice-covered ocean indicates that the initial wind event, rather than subsequent inertial shear, causes the majority of the mixing. This work points towards episodic wind-forced shear at the base of the mixed layer coupled with static instability from brine rejection due to ice production as a major factor in mixing on the wAP shelf. / by Jason Hyatt. / Ph.D.
295

Investigations of scalar transfer coefficients in fog during the Coupled Boundary Layers and Air Sea Transfer experiment : a case study / Investigations of scalar transfer coefficients in fog during the CBLAST experiment : a case study

Crofoot, Robert Farrington January 2005 (has links)
Thesis (S.M.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Ocean Engineering; and the Woods Hole Oceanographic Institution), 2005. / Includes bibliographical references (leaves 70-72). / The uncertainty in the determination of the momentum and scalar fluxes remains one of the main obstacles to accurate numerical forecasts in low to moderate wind conditions. For example, latent heat fluxes computed from data using direct covariance and bulk aerodynamic methods show that there is good agreement in unstable conditions when the latent heat flux values are generally positive. However, the agreement is relatively poor in stable conditions, particularly when the moisture flux is directed downward. If the direct covariance measurements are indeed accurate, then they clearly indicate that the bulk aerodynamic formula overestimate the downward moisture flux in stable conditions. As a result, comparisons of the Dalton number for unstable and stable conditions indicate a marked difference in value between the two stability regimes. Investigations done for this thesis used data taken primarily at the Air-Sea Interaction Tower (ASIT) during the Coupled Boundary Layers and Air-Sea Transfer (CBLAST) Experiment 2003 from the 20-27 August 2003. Other data from the shore based Martha's Vineyard Coastal Observatory (MVCO) and moored buoys in the vicinity of the ASIT were also incorporated. / (cont.) During this eight day period, the boundary layer was often characterized by light winds, a stably stratified surface layer and a swell dominated wave field. Additionally, the advection of warm moist air over cooler water resulted in fog formation and a downward flux of moisture on at least three occasions. Therefore, a primary objective of this thesis is to present a case study to investigate the cause of this shortcoming in the bulk formula under these conditions by examining the physical processes that are unique to these boundary layers. Particular attention will be paid to the behavior of the Dalton number in a stable marine atmospheric boundary layer under foggy conditions using insights derived from the study of fog formation and current flux parameterization methods. / by Robert Farrington Crofoot. / S.M.
296

Low-latitude Western North Atlantic climate variability during the past millennium : insights from proxies and models

Saenger, Casey Pearce January 2009 (has links)
Thesis (Ph.D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2009. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 59-65). / Estimates of natural climate variability during the past millennium provide a frame of reference in which to assess the significance of recent changes. This thesis investigates new methods of reconstructing low-latitude sea surface temperature (SST) and hydrography, and combines these methods with traditional techniques to improve the present understanding of western North Atlantic climate variability. A new strontium/calcium (Sr/Ca) - SST calibration is derived for Atlantic Montastrea corals. This calibration shows that Montastrea Sr/Ca is a promising SST proxy if the effect of coral growth is considered. Further analyses of coral growth using Computed Axial Tomography (CAT) imaging indicate growth in Siderastrea corals varies inversely with SST on interannual timescales. A 440-year reconstruction of low-latitude western North Atlantic SST based on this relationship suggests the largest cooling of the last few centuries occurred from -1650-1730 A.D., and was -I°C cooler than today. Sporadic multidecadal variability in this record is inconsistent with evidence for a persistent 65-80 year North Atlantic SST oscillation. Volcanic and anthropogenic radiative forcing are identified as important sources of externally-forced SST variability, with the latter accounting for most of the 20th century warming trend. An 1800-year reconstruction of SST and hydrography near the Gulf Stream also suggests SSTs remained within about I°C of modern values. This cooling is small relative to other regional proxy records and may reflect the influence of internal oceanic and atmospheric circulation. / (cont.) Simulations with an atmospheric general circulation model (AGCM) indicate that the magnitude of cooling estimated by proxy records is consistent with tropical hydrologic proxy records. / by Casey Pearce Saenger. / Ph.D.
297

Cross-shelf circulation and momentum and heat balances over the inner continental shelf near Martha's Vineyard, Massachusetts

Fewings, Melanie Rinn January 2007 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2007. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Includes bibliographical references (p. 257-267). / The water circulation and evolution of water temperature over the inner continental shelf are investigated using observations of water velocity, temperature, density, and bottom pressure; surface gravity waves; wind stress; and heat flux between the ocean and atmosphere during 2001-2007. When waves are small, cross-shelf wind stress is the dominant mechanism driving cross-shelf circulation. The along-shelf wind stress does not drive a substantial cross-shelf circulation. The response to a given wind stress is stronger in summer than winter. The cross-shelf transport in the surface layer during winter agrees with a two-dimensional, unstratified model. During large waves and onshore winds the crossshelf velocity is nearly vertically uniform, because the wind- and wave-driven shears cancel. During large waves and offshore winds the velocity is strongly vertically sheared because the wind- and wave-driven shears have the same sign. The subtidal, depth-average cross-shelf momentum balance is a combination of geostrophic balance and a coastal set-up and set-down balance driven by the cross-shelf wind stress. The estimated wave radiation stress gradient is also large. The dominant along-shelf momentum balance is between the wind stress and pressure gradient, but the bottom stress, acceleration, Coriolis, Hasselmann wave stress, and nonlinear advection are not negligible. The fluctuating along-shelf pressure gradient is a local sea level response to wind forcing, not a remotely generated pressure gradient. In summer, the water is persistently cooled due to a mean upwelling circulation. The cross-shelf heat flux nearly balances the strong surface heating throughout mid-summer, so the water temperature is almost constant. The along-shelf heat flux divergence is apparently small. In winter, the change in water temperature is closer to that expected due to the surface cooling. Heat transport due to surface gravity waves is substantial. / by Melanie Rinn Fewings. / Ph.D.
298

Observations and modelling of deep equatorial currents in the central Pacific

Ponte, Rui Vasques de Melo January 1988 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1988. / Includes bibliographical references (leaves 178-180). / Analysis of vertical profiles of absolute horizontal velocity collected in January 1981, February 1982 and April 1982 in the central equatorial Pacific as part of the Pacific Equatorial Ocean Dynamics (PEQUOD) program, revealed two significant narrow band spectral peaks in the zonal velocity records, centered at vertical wavelengths of 560 and 350 stretched meters (sm). Both signals were present in all three cruises, but the 350 sm peak showed a more steady character in amplitude and a higher signal-to-noise ratio. In addition, its vertical scales corresponded to the scales of the conspicuous alternating flows generically called the equatorial deep jets in the past (the same terminology will be used here). Meridional velocity and vertical displacement spectra did not show any such energetic features. Energy in the 560 sm band roughly doubled between January 1981 and April 1982. Time lagged coherence results suggested upward phase propagation at time scales of about 4 years. East-west phase lines computed from zonally lagged coherences, tilted downward towards the west, implying westward phase propagation. Estimates of zonal wavelength (on the order of 10000 km) and period based on these coherence calculations, and the observed energy meridional structure at this vertical wavenumber band, seem consistent, within experimental errors, with the presence of a first meridional mode long Rossby wave packet, weakly modulated in the zonal direction. The equatorial deep jets, identified with the peak centered at 350 sm, are best defined as a finite narrow band process in vertical wavenumber (311-400 sm), accounting for only 20% of the total variance present in the broad band energetic background. At the jets wavenumber band, latitudinal energy scaling compared well with Kelvin wave theoretical values and a general tilt of phase lines downward towards the east yielded estimates of 10000-16000 km for the zonal wavelengths. / by Rui Vasques de Melo Ponte. / Ph.D.
299

FLUXOS DE CALOR E TRANSFERÊNCIA DE ENERGIA CALORÍFICA ENTRE O OCEANO E A ATMOSFERA SOBRE ESTRUTURAS OCEÂNICAS DE MESOESCALA NO ATLÂNTICO SUL / HEAT FLUXES AND HEAT ENERGY TRANSFER BETWEEN THE OCEAN AND THE ATMOSPHERE ON TOP OF OCEANIC MESOSCALE STRUCTURES IN THE SOUTH ATLANTIC

Arsego, Diogo Alessandro 20 March 2012 (has links)
Understanding the interactions between ocean and atmosphere in regions of oceanographic fronts is of vital importance for the improvement of numerical models for weather and climate forecasting. In the South Atlantic Ocean (SAO) the meeting between the warm waters of the Brazil Current (BC) and the cold waters of the Malvinas (Falkland) Current (MC) in the region known as the Brazil-Malvinas Confluence (BMC), results in intense mesoscale oceanic activity and, for this reason, this region is considered one of the most energetic of the Global Ocean. The interactions resulting from the thermal contrast in regions oceanographic fronts of the OAS are investigated in this work through estimates of heat fluxes based on data collected in situ and by satellite. The results of this study show that the response to the thermal contrasts found in the ocean is in the form of heat fluxes and these fluxes are critical in modulating the atmospheric boundary layer (ABL). Estimation based on data collected in situ show that in the warm side (north) of the oceanographic front the fluxes are more intense (latent heat: 62 W/m² and sensible heat: 0.6 W/m²) than in the cold side (south) (latent heat: 5.8 W/m² and sensible heat: -13.8 W/m²). In the South Atlantic Current (SAC) along the 30° S parallel, heat fluxes are directly related to the meandering characteristic of the current. The data collected in situ, in addition to allow heat flux estimates at a better spatial resolution, were used to develop a new method for estimating the heat energy exchanged between the atmosphere and the ocean caused by the presence of mesoscale oceanic structures. This methodology consists in the comparison of a radiosonde profile taken over waters of the structure of interest and another taken over waters which do not belong to this structure. The methodology was used to estimate the heat energy transfer between the atmosphere and the ocean over the top of three structures sampled in the OAS. The estimation of the heat energy transferred by a warm eddy detached from the BC points to an energy in the latent (sensible) form of 1.6 1017 J (-2.8 1016 J) which corresponds to approximately 0.011 % of the total heat energy of the eddy transferred to the atmosphere during the field experiment and 0.78 % transferred during the supposed lifetime of the eddy (3 months). Along the CSA two oceanic structures were studied: (i) a cold meander that receives from the atmosphere energy in the latent (sensible) form of 1.4 106 J/m2 (5.4 105 J/m2), and (ii) warmer waters associated with a detached eddy from the Agulhas Current (AC) that transfer to the atmosphe heat energy of approximately 4 106 J/m2 an 5.7 106 J/m2 in the latent and sensible forms, respectively. The estimation of heat energy transfer on top of mesoscale oceanic structures clearly demonstrate the importance of these structures for the heat exchanges between the ocean and the atmosphere and must be taken into account in future works about this subject in the SAO. / A compreensão das interações entre oceano e atmosfera em regiões de frentes oceanográficas é de vital importância para o melhoramento de modelos numéricos de previsão do tempo e clima. No Oceano Atlântico Sul (OAS) o encontro entre as águas quentes da Corrente do Brasil (CB) com as águas frias da Corrente das Malvinas (CM), na região denominada Confluência Brasil-Malvinas (CBM), resulta em intensa atividade oceânica de mesoescala e, por esse motivo, essa região é considerada uma das mais energéticas do Oceano Global. As interações resultantes do contraste termal ao longo de regiões de frentes oceanográficas no OAS são investigadas neste trabalho através de estimativas de fluxos de calor baseadas em dados de satélite e dados coletados in situ. Os resultados do trabalho demonstram que a resposta aos contrastes termais encontrados no oceano se dá na forma de fluxos de calor e que esses fluxos são fundamentais na modulação da Camada Limite Atmosférica (CLA). As estimativas com base em dados coletados in situ demonstram que no lado quente (norte) da frente oceanográfica os fluxos são mais intensos (calor latente: 62 W/m² e calor sensível: 0,6 W/m²) que nos lado frio (sul) (calor latente: 5,8 W/m² e calor sensível: -13,8 W/m²). Na Corrente Sul Atlântica (CSA), ao longo do paralelo de 30° S, os fluxos de calor estão diretamente relacionados a característica meandrante da corrente. Os dados coletados in situ, além de possibilitarem estimativas de fluxo de calor com uma melhor resolução espacial, foram usados no desenvolvimento de uma nova metodologia para estimativa da energia calorífica trocada entre oceano e atmosfera em virtude da presença de estruturas oceânicas de mesoescala. Essa metodologia consiste na comparação entre um perfil de radiossonda tomado sobre águas da estrutura de interesse e outro tomado sobre águas que não pertencem a essa estrutura. A metodologia desenvolvida foi utilizada para determinar a transferência de energia calorífica entre oceano e atmosfera em três estruturas amostradas no OAS. A estimativa da energia calorífica transferida por um vórtice quente desprendido da CB aponta para uma energia na forma latente (sensível) de 1,6 1017 J (-2,8 1016 J) que corresponde a aproximadamente 0,011 % da energia calorífica total do vórtice transferida durante o experimento de campo e de 0,78 % da energia do vórtice transferidos durante o tempo suposto de vida do vórtice (3 meses). Ao longo da CSA, duas estruturas oceânicas foram estudadas: (i) um meandro frio que recebe da atmosfera uma energia na forma latente (sensível) de 1,4 106 J/m2 (5,4 105 J/m2) e (ii) águas mais quentes associadas a um vórtice desprendido da Corrente das Agulhas (CA) que transferem para a atmosfera uma energia calorífica de aproximadamente 4 106 J/m2 e 5,7 106 J/m2 nas formas latente e sensível, respectivamente. As estimativas da transferência de energia calorífica sobre estruturas oceânicas de mesoescala demonstram claramente a importância destas nas trocas de calor entre o oceano e a atmosfera e devem ser levadas em consideração em trabalhos futuros sobre o tema no OAS.
300

Dinâmica do Atlântico tropical e seus impactos sobre o clima ao longo da costa do Nordeste do Brasil

Hounsou-gbo, Gbekpo Aubains. 08 April 2015 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-03-18T13:04:49Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese_Gbekpo_Aubains_2015.pdf: 10869276 bytes, checksum: 0b22521ef971c75f3112dcbc74fcbb7a (MD5) / Made available in DSpace on 2016-03-18T13:04:50Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese_Gbekpo_Aubains_2015.pdf: 10869276 bytes, checksum: 0b22521ef971c75f3112dcbc74fcbb7a (MD5) Previous issue date: 2015-04-08 / As interações do sistema oceano-atmosfera no Atlântico tropical e suas contribuições à grande variabilidade da precipitação ao longo da costa do nordeste do Brasil (NEB) foram investigadas para os anos de 1974-2008. Os núcleos das estações chuvosas de Março-Abril e de Junho-Julho foram identificados para a parte norte do Nordeste do Brasil (NNEB) e a parte leste do Nordeste do Brasil (ENEB), respectivamente. As regressões lineares defasadas entre as anomalias da Temperatura da Superfície do Mar (TSM), da Pseudo tensão de cisalhamento de vento (PWS), do Fluxo de calor latente (LHF), da Umidade especifica do ar, e as anomalias (positivas e negativas) de precipitação forte no NNEB e no ENEB mostram que a variabilidade da precipitação dessas regiões é diferentemente influenciada pela dinâmica do Atlântico tropical. Quando a zona de convergência intertropical (ZCIT) é anormalmente deslocada para o sul alguns meses antes da estação chuvosa do NNEB, a fase negativa do Modo Meridional do Atlântico (AMM) (fortalecimento dos ventos alísios do nordeste, relaxamento dos ventos alísios do sudeste, maior evaporação no hemisfério norte, menor evaporação no hemisfério sul, TSM mais fria no hemisfério norte, e TSM mais quente no hemisfério Sul), aumenta a precipitação durante a estação chuvosa. O efeito oposto ocorre durante a fase positiva do AMM. Além disso, o estudo mostra a grande influência e um efeito preditivo da região Noroeste do Atlântico Equatorial noroeste (NWEA) sobre a precipitação do NNEB. Com relação ao estado subsuperficial do oceano, os resultados indicam que uma camada de barreira mais fina na NWEA de Novembro-Dezembro até Março-Abril é associada ao resfriamento progressivo da TSM, ao reforço do componente meridional do vento nordeste e precipitações intensas sobre o NNEB. Já a influência da dinâmica do Atlântico tropical sobre a variabilidade da precipitação no ENEB em Junho-Julho indica uma propagação para noroeste de uma área de forte correlação positiva de TSM e de Umidade específica do ar, deslocando-se da parte sudeste do Atlântico tropical (de Fevereiro-Março) para a região da Piscina Quente do Atlântico Sudoeste (SAWP), situada ao largo do Brasil (Junho-Julho). A área de propagação das anomalias, observada segue globalmente o caminho do ramo sul da Corrente Sul Equatorial (sSEC), que é responsável pelo transporte de calor oceânico de leste para oeste no Atlântico tropical sul. O deslocamento da fase mais quente da advecção horizontal de calor oceânico, na camada de mistura, de leste da bacia (entre 5º-15ºS) para a costa do Brasil em Junho-Agosto corrobora a influência da sSEC sobre o núcleo da chuva do ENEB. Uma aceleração dos ventos alísios de sudeste, associada a uma convergência da anomalia do vento sobre a SAWP, produz excesso de umidade do ar sobre a região e provoca mais precipitação sobre ENEB. O efeito oposto ocorre para os episódios menos chuvosos. De acordo com o estudo, a SAWP se mostra como uma área de potencial para o estabelecimento de um índice de previsão de chuvas no ENEB. / Tropical Atlantic Ocean-atmosphere interactions and their contributions to strong variability of rainfall along the Northeast Brazilian coast (NEB) were investigated for the years 1974-2008. The core rainy seasons of March-April and June-July were identified for northern Northeast Brazil (NNEB) and eastern Northeast Brazil (ENEB), respectively. Lagged linear regressions between sea surface temperature (SST), pseudo wind stress (PWS), latent heat flux (LHF) and air specific humidity anomalies over the entire tropical Atlantic and strong rainfall anomalies in NNEB and ENEB show that the rainfall variability of these regions is differentially influenced by the dynamics of the tropical Atlantic. When the intertropical convergence zone (ITCZ) is abnormally displaced southward a few months prior to the NNEB rainy season, the associated meridional mode (strengthening of the northeast trade winds, relaxation of the southeast trade winds, strong evaporation in the north, weak evaporation in the south, colder SST in the North, and warmer SST in the South) increases precipitation during the rainy season. The opposite effect occurs during the positive phase of the dipole. Additionally, this study shows strong influence and predictive effect of the Northwestern Equatorial Atlantic (NWEA) on the NNEB rainfall. Thinner barrier layer in the NWEA from November-December to March-April is associated with progressive cooling of SST, strengthening of meridional component of the northeasterly wind and intense precipitations over the NNEB. The dynamical influence of the tropical Atlantic on the June-July ENEB rainfall variability shows a northwestward-propagating area of strong, positively correlated SST and air specific humidity from the southeastern tropical Atlantic (February-March) to the Southwestern Atlantic Warm Pool (SAWP) offshore of Brazil (June-July). The northwestward-propagating area, observed from February-March to June-July, follows the same pathway of the southern branch of south equatorial current (sSEC), which is responsible of the oceanic heat transport from east to west in the southern tropical Atlantic. The displacement of the warmest phase of horizontal advection of the oceanic mixed layer heat from the eastern part (between 5-15ºS) to the Brazilian coast in June-August confirms this influence of the sSEC on core rainy season in the ENEB. Furthermore, according to our study, the SAWP could be used as index of rainfall prediction in ENEB. An early acceleration of the southeasterly trade winds, associated with a strong convergence of the wind anomaly over the SAWP, produces excessive humidity over the region and causes more precipitation over ENEB. The opposite effect occurs for less rainy episodes.

Page generated in 0.2739 seconds