271 |
Sudden Stratospheric Warmings and Their Impact on Northern Hemisphere Winter ClimateOehrlein, Jessica January 2021 (has links)
Sudden stratospheric warmings (SSWs) are a key driver of winter climate variability in the Northern Hemisphere. SSWs are a disruption of the strong stratospheric westerlies over the winter pole in which the winds in the upper to middle stratosphere, from about 30 to 50 km above the surface, weaken and reverse and the polar cap temperatures increase by up to 50 K in only a few days. These events affect tropospheric conditions for the two months following, on average shifting the North Atlantic storm track equatorward and resulting in a negative Northern Annular Mode and North Atlantic Oscillation at the surface. These changes are associated with colder and drier than average conditions in Northern Europe and Eurasia and warmer and wetter than average conditions across Southern Europe, as well as high temperatures across North Africa, the Middle East, and Central Asia and increased cold air outbreaks in North America and Eurasia.
This thesis examines this typical surface response to SSWs in several different contexts. We consider its relationship to other atmospheric phenomena and features, first quantifying its importance relative to the North Atlantic impacts of the El Niño-Southern Oscillation (ENSO) and then examining the role of ozone chemistry in modeling the surface response to SSWs. We also study the variability of the surface signature of SSWs, with the goal of understanding the uncertainty in magnitude and spatial pattern of surface climate patterns following SSWs and the relative roles of different sources of this uncertainty.
After providing background and context in the first chapter, the second chapter studies interactions between SSWs and the El Niño phase of ENSO. El Niño affects climate in the North Atlantic and European regions, those most affected by SSWs, through tropospheric and stratospheric pathways. One of these pathways is increased SSW frequency. However, most SSWs (about 90\%) are unrelated to ENSO, and the importance for boreal winter surface climate of this frequency increase compared to other El Niño pathways remains to be quantified. We here contrast these two sources of variability using two 200-member ensembles of one-year integrations of the Whole Atmosphere Community Climate Model, one ensemble with prescribed El Niño sea surface temperatures (SSTs) and one with neutral-ENSO SSTs. We form composites of wintertime climate anomalies, with and without SSWs, in each ensemble and contrast them to a basic state represented by neutral-ENSO winters without SSWs. This approach allows us to isolate the distinct effects of ENSO and SSWs more clearly than was done in previous work. We find that El Niño and SSWs both result in negative North Atlantic Oscillation anomalies and have comparable impacts on European precipitation, but SSWs cause larger Eurasian cooling. These results indicate the potential impact of a strong El Niño on seasonal forecasting in the North Atlantic as well as the importance of resolving the stratosphere in subseasonal and seasonal forecast models to best capture stratospheric polar vortex variability.
In the third chapter, we study the importance of interactive ozone chemistry in representing the stratospheric polar vortex and Northern Hemisphere winter surface climate variability. Modeling and observational studies have reported effects of stratospheric ozone extremes on Northern Hemisphere spring climate. Recent work has further suggested that the coupling of ozone chemistry and dynamics amplifies the surface response to midwinter SSWs. We contrast two 200-year simulations from the interactive and specified chemistry (and thus ozone) versions of the Whole Atmosphere Community Climate Model with constant year-2000 forcings. This experiment is thus designed to clearly isolate the impact of interactive ozone on polar vortex variability. In particular, we analyze the response with and without interactive chemistry to midwinter SSWs, March SSWs, and strong polar vortex events (SPVs). With interactive chemistry, the stratospheric polar vortex is stronger, and more SPVs occur, but we find little effect on the frequency of midwinter SSWs. At the surface, interactive chemistry results in a pattern resembling a more negative North Atlantic Oscillation following midwinter SSWs, but with little impact on the surface signatures of late winter SSWs and SPVs. These results suggest that including interactive ozone chemistry in model simulations is important for representing North Atlantic and European winter climate variability.
In the fourth chapter, we turn from models to reanalysis and consider the uncertainty in the surface response to SSWs. While the qualitative features of the mean surface signature of SSWs in the North Atlantic and Europe are well-established, its uncertainties as well as other features of surface climate following SSWs are less well-understood. To address the question of robustness of the mean observed response to SSWs, we use bootstrapping with replacement to construct synthetic SSW composites from SSW events in reanalysis, creating an ensemble of composites comparable to the observed one. We then examine the differences across these synthetic composites. We find that the canonical responses of a negative North Atlantic Oscillation and associated temperature and precipitation anomalies in the North Atlantic and European regions in the months following SSWs are robust. However, the magnitude and spatial pattern of these anomalies vary considerably across the composites. We further find that this uncertainty is unrelated to vortex strength and is instead the result of unrelated tropospheric variability. These results have implications for evaluating the fidelity of forecast models in capturing the surface impact of SSWs, by comparing both the mean impact as well as the contribution from internal variability with observations.
Overall, we demonstrate the complexity of interactions of sudden stratospheric warmings with other sources of variability in the Earth system. We find that the state of the polar vortex itself, the strength of downward propagation following the SSW, and the surface response can all be affected in important ways by these other components (e.g. tropospheric variability and Arctic ozone). We close by providing broader context for these results and looking towards continuing and future work in the field.
|
272 |
Design, fabrication and deployment of a miniaturized spectrometer radiometer based on MMIC technology for tropospheric water vapor profilingIturbide-Sanchez, Flavio 01 January 2007 (has links)
This dissertation describes the design, fabrication and deployment of the Compact Microwave Radiometer for Humidity profiling (CMR-H). The CMR-H is a new and innovative spectrometer radiometer that is based on monolithic microwave and millimeter-wave integrated circuit (MMIC) technology and is designed for tropospheric water vapor profiling. The CMR-H simultaneously measures microwave emission at four optimally-selected frequency channels near the 22.235 GHz water vapor absorption line, constituting a new set of frequencies for the retrieval of the water vapor profile. State-of-the-art water vapor radiometers either measure at additional channels with redundant information or perform multi-frequency measurements sequentially. The fabrication of the CMR-H demonstrates the capability of MMIC technology to reduce substantially the operational power consumption and size of the RF and IF sections. Those sections comprise much of the mass and volume of current microwave receivers for remote sensing, except in the case of large antennas. The use of the compact box-horn array antenna in the CMR-H demonstrates its capability to reduce the mass and volume of microwave radiometers, while maintaining similar performance to that of commonly-used, bulky horn antennas. Due to its low mass, low volume, low power consumption, fabrication complexity and cost, the CMR-H represents a technological improvement in the design of microwave radiometers for atmospheric water vapor observations. The field test and validation of the CMR-H described in this work focuses on comparisons of measurements during two field experiments from the CMR-H and a state-of-the-art microwave radiometer, which measures only in a volume subtended by the zenith-pointing antenna's beam pattern. In contrast, the CMR-H is designed to perform volumetric scans and to function correctly as a node in a network of radiometers. Mass production of radiometers based on the CMR-H design is expected to enable the implementation of a dense network of radiometers designed to perform measurements of the 3-D water vapor field, with the potential to improve weather forecasting, particularly the location and timing of the initiation of intense convective activity responsible for potentially damaging winds, rain, hail and lightning.
|
273 |
Angle -of -arrival fluctuations of optical waves in the atmospheric surface layerCheon, Yonghun 01 January 2008 (has links)
When an optical wave propagates through atmosphere, the wave experiences amplitude, phase, and angle-of-arrival (AOA) fluctuations which are mainly caused by the refractive-index fluctuations of the atmosphere. Thus, the wave fluctuations carry characteristics of the atmosphere. In this dissertation, the AOA fluctuations are studied theoretically and experimentally. For the theoretical part, closed-form solutions of the AOA fluctuations for plane and spherical waves observed by a receiver with a finite aperture were developed. It was assumed that the waves propagate through homogeneous and isotropic media and that the Rytov approximation is valid. The existing closed-form solutions of the AOA fluctuations for the waves are valid only for the cases that the aperture size of the receiver is much larger or much smaller than the Fresnel length. The closed-form solutions developed in this dissertation, however, are valid for all ratios between the aperture diameter and the Fresnel length. The closed-form solutions were compared with the numerical solutions and the accuracy of the closed-form solutions is less than 0.2%. For the experimental part, remote sensing of wind speed transverse to a propagation path using the frequency spectra of the AOA fluctuations was performed with a telescope and a CCD camera. The knee frequency, the intersection of the -2/3 and -8/3 power laws of the spectrum, is a function of wind speed and an effective baseline. If the knee frequency and the effective baseline are known, the transverse wind speed can be retrieved, and if the knee frequency and the transverse wind speed are known, the effective baseline can be estimated. From the measured knee frequency of the spectra of the AOA fluctuations and the aperture size of the telescope as initial guess for the effective baseline, the path-averaged transverse wind speed was retrieved. The effective baseline was calibrated based on wind speed measured by a anemometer. The rms difference between the path-averaged calibrated wind speed retrieved from the frequency spectra of the AOA fluctuations with 30 s of estimation time and the 30 s time-averaged transverse wind speed measured by the anemometer was 11 cm/s -1, while the wind speed varied between 0 and 80cm/s-1.
|
274 |
Atmospheric Effects on the Propagation of MMW and Sub-MMW RadiationCetnar, John S. 28 June 2010 (has links)
No description available.
|
275 |
Preliminary assessment of the use of radiometer and radar measurements in atmospheric probingBolduc, Gilles. January 1980 (has links)
No description available.
|
276 |
The upper atmospheric temperature structure of Uranus via stellar occultationsSaunders, William R. 26 June 2024 (has links)
Measurements made by the Voyager 2 spacecraft during its flyby of Uranus in 1986 found warm stratospheric and hot thermospheric temperatures that cannot be explained by solar heating alone. This contributes to what has become known as the “giant planet energy crisis”: there is a fundamental lack of understanding of the energy balance of the giant planets in the solar system. Uranus has the coldest stratospheric temperatures, the hottest thermospheric temperatures at some altitudes, and yet the weakest internal heat flux of all four giant planets. Moreover, the Voyager 2 temperature profiles are at odds with the many contemporaneous Earth-based stellar occultation observations. This unresolved tension impedes efforts to compare atmospheres in the solar system to one another and to exoplanet atmospheres.
In this dissertation, I present an investigation into the upper atmospheric temperatures of Uranus using archival Earth-based stellar occultation observations. I begin with an overview of planetary atmospheres and remote-sensing measurements of Uranus in Chapter 1. In Chapter 2, I derive and explain how stellar occultations are predicted, observed, processed, and analyzed, emphasizing my contributions. Chapter 3 describes how I validated these techniques on an archival Mars occultation. In Chapter 4, I present the results of comparing the Voyager 2 measurements to 26 archival Earth-based stellar occultations by Uranus. In Chapter 5, I present new temperature profiles from reprocessing these 26 occultations and a new one-dimensional atmospheric model based thereon. Chapter 6 outlines a low-Earth orbit mission concept to observe many new stellar occultations. Chapter 7 contains conclusions and summaries.
My primary finding is that the lower thermosphere of Uranus is much cooler than reported by Voyager 2. I find that the mesopause is likely higher in altitude than previously believed and the stratosphere of Uranus has a nearly isothermal section, in alignment with the other giant planets. My new atmospheric model suggests Uranus has a significant source of heat dissipation in the stratosphere, which might be supplied by gravity waves. This work can contribute to planning for any Uranus Orbiter and Probe mission by helping to revise Uranus’ representative temperature profile and improving our understanding of Uranus’ energy balance.
|
277 |
Analysis of meteorological observations from an array of buoys during JASINIshida, Hiroshi 14 December 1979 (has links)
Observations of wind speed and direction, air and sea temperature,
and solar radiation were obtained from an array of buoys in
JASIN. The observations were analyzed to show spatial and temporal
variability. Spectra of wind speed and air and sea temperature were
computed to illustrate the distribution of variance over periods
ranging from 3.5 minutes to 40 days. When plotted on log-log graphs
the spectral estimates generally decrease with increasing frequency
with slopes between -3/2 and -2. Spectra of air and sea temperature
have a peak at the diurnal frequency. When plotted in variance-preserving
form, the spectrum of wind speed is consistent with a spectral
gap and is qualitatively similar to other observations of low
frequency spectra. On the basis of a cross-correlation analysis, it
appears that mesoscale eddies propagated with the mean wind speed
except during frontal passages. Based on the cross-correlation
between wind speed and air temperature, there is evidence of horizontal
roll vortices or organized convection. / Graduation date: 1980
|
278 |
The carbon isotopic content and concentration of ambient formic and acetic acid.Johnson, Bryan Jay. January 1991 (has links)
A direct method for source determination of atmospheric formic and acetic acid, through carbon isotopic analysis of the ambient acids and their potential sources, has been successfully developed and tested. These first carbon isotopic measurements of formic acid in the atmosphere were found to be fairly constant, regardless of location. This is consistent with a single dominating source of formic acid, with vegetation emissions being the most likely controlling source. Collection of relatively large quantities (0.3$-$3.0 mg) of the organic acids, which was necessary for carbon isotopic measurements, was effectively accomplished by a new method using calcium hydroxide-treated filters with a high-volume sampler. Samples were collected on a regular basis at Mount Lemmon, Arizona (elevation = 9200 feet A.S.L.). Atmospheric concentrations showed a well-defined seasonal pattern, with the lowest concentrations (about 0.2 ppbv) occurring in the middle of the winter, which steadily increased to a maximum of nearly 2 ppbv in the summer. The ¹³C content (δ ¹³C) of HCOOH averaged -20.9 ± 2.5 ‰ during the growing season (April-September) and -23.2 ± 3.5 ‰ during the non-growing season at Mount Lemmon. Isotopic measurements of formic acid from several other locations included two west coast marine sites (δ ¹³C range of -19.1 to -24.6 ‰), three Colorado Rocky Mountain samples averaging -23.2 ± 1.0 ‰, two from the prairie of North Dakota (-23.5 ± 1.0 ‰) and three samples collected in the urban Tucson, Arizona area (-20.8 ± 3.4 ‰). Source measurements included HCOOH emissions from two species of formicine ants (-18.8 ± 1.7 ‰), and HCOOH in automobile exhaust (-28 ‰ from leaded gasoline, and -48.6 ‰ from unleaded). Further support for a biogenic source of atmospheric HCOOH came from the carbon-14 analysis of six Mount Lemmon HCOOH samples (93-113% modern carbon), using accelerator mass spectrometry. Carbon isotopic fractionation during exchange of HCOOH between the liquid and gas phases was investigated through a gas/liquid partitioning experiment. A first experimental measurement of the Henry's Law coefficient (Kᴴ) averaged 7400 ± 800 M/atm. Fractionation between HCOOH(g) and HCOOH(aq) was found to be negligible.
|
279 |
NONLOCAL AND NONLINEAR EFFECTS ON SOLAR OSCILLATIONS (RADIATIVE DAMPING, LIMB DARKENING).LOGAN, JERRY DAVID. January 1984 (has links)
This work investigates the response of the solar atmosphere to mechanical and thermal driving due to global solar oscillations. It was discovered that the coupling of thermal and mechanical modes was very important in reconciling theoretical predictions of the expected change in the solar limb due to solar oscillations and experimental observations of the variability in the solar limb darkening function undertaken at SCLERA (Santa Catalina Laboratory for Experimental Relativity). The coupling between the thermal and mechanical modes occur mainly due to the nonlocal nature of the radiation field. Previous theoretical calculations that used approximations for the radiative transfer that ignored the nonlocal nature of the radiation field predicted expected temperature perturbations (compared to the fluid displacement) that were much too small to be observed. Much larger ratios were found when the radiative transfer was treated properly. A particular solar oscillation can be influenced by the presence of a large number of other modes, if these modes can change the average properties of the medium. If the basic nonlinear equations are statistically averaged, the influence of the "mean field" can be investigated. This nonlinear effect can become important in the analysis for single modes in the upper photosphere.
|
280 |
Modelling the impact of Southeast Asian deforestation on climate and the atmospheric circulationWan Hassan, Wan Azli January 1999 (has links)
No description available.
|
Page generated in 0.0435 seconds