• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 131
  • 20
  • 20
  • 20
  • 20
  • 20
  • 20
  • 16
  • 12
  • 9
  • 6
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 268
  • 69
  • 55
  • 45
  • 43
  • 41
  • 41
  • 37
  • 33
  • 29
  • 27
  • 27
  • 26
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Effect of modified atmosphere packaging on the growth and aflatoxin production by Aspergillus flavus and Aspergillus parasiticus under tropical environmental storage conditions

Ellis, William Otoo January 1993 (has links)
No description available.
62

Shelf life and microbiological safety studies on minimally processed, refrigerated "sous-vide" products

Simpson, Marian V. January 1993 (has links)
No description available.
63

The Dynamic Atmospheres of Classical Cepheids: Studies of Atmospheric Extension, Mass Loss, and Shocks

Neilson, Hilding 19 February 2010 (has links)
In this dissertation, we develop new tools for the study of stellar atmospheres, pulsating stellar atmospheres and mass loss from pulsating stars. These tools provide new insights into the structure and evolution of stars and complement modern observational techniques such as optical interferometry and high resolution spectroscopy. In the first part, a new spherically symmetric version of the Atlas program is developed for modelling extended stellar atmospheres. The program is used to model interferometric observations from the literature and to study limb-darkening for stars with low gravity. It is determined that stellar limb-darkening can be used to constrain fundamental properties of stars. When this is coupled with interferometric or microlensing observations, stellar limb-darkening can predict the masses of isolated stars. The new SAtlas program is combined with the plane-parallel hydrodynamic program Hermes to develop a new spherically-symmetric radiative hydrodynamic program that models radial pulsation in the atmosphere of a star to depths including the pulsation-driving regions of the stars. Preliminary tests of this new program are discussed. In the second part, we study the recent observations of circumstellar envelopes surrounding Cepheids and develop a mass-loss hypothesis to explain their formation. The hypothesis is studied using a modified version of the Castor, Abbott, & Klein theory for radiative-driven winds to contain the effects of pulsation. In the theory, pulsation is found to be a driving mechanism that increases the mass-loss rates of Cepheids by up to four orders of magnitude. These mass-loss rates are large enough to explain the formation of the envelopes from dust forming in the wind at large distances from the surface of the star. The mass-loss rates are found to be plausible explanation for the Cepheid mass discrepancy. We also compute mass-loss rates from optical and infrared observations of Large Magellanic Cloud Cepheids from the infrared excess and find mass loss to be an important phenomena in these stars. The amount of infrared excess is found to potentially affect the structure of the infrared Leavitt law.
64

The Dynamic Atmospheres of Classical Cepheids: Studies of Atmospheric Extension, Mass Loss, and Shocks

Neilson, Hilding 19 February 2010 (has links)
In this dissertation, we develop new tools for the study of stellar atmospheres, pulsating stellar atmospheres and mass loss from pulsating stars. These tools provide new insights into the structure and evolution of stars and complement modern observational techniques such as optical interferometry and high resolution spectroscopy. In the first part, a new spherically symmetric version of the Atlas program is developed for modelling extended stellar atmospheres. The program is used to model interferometric observations from the literature and to study limb-darkening for stars with low gravity. It is determined that stellar limb-darkening can be used to constrain fundamental properties of stars. When this is coupled with interferometric or microlensing observations, stellar limb-darkening can predict the masses of isolated stars. The new SAtlas program is combined with the plane-parallel hydrodynamic program Hermes to develop a new spherically-symmetric radiative hydrodynamic program that models radial pulsation in the atmosphere of a star to depths including the pulsation-driving regions of the stars. Preliminary tests of this new program are discussed. In the second part, we study the recent observations of circumstellar envelopes surrounding Cepheids and develop a mass-loss hypothesis to explain their formation. The hypothesis is studied using a modified version of the Castor, Abbott, & Klein theory for radiative-driven winds to contain the effects of pulsation. In the theory, pulsation is found to be a driving mechanism that increases the mass-loss rates of Cepheids by up to four orders of magnitude. These mass-loss rates are large enough to explain the formation of the envelopes from dust forming in the wind at large distances from the surface of the star. The mass-loss rates are found to be plausible explanation for the Cepheid mass discrepancy. We also compute mass-loss rates from optical and infrared observations of Large Magellanic Cloud Cepheids from the infrared excess and find mass loss to be an important phenomena in these stars. The amount of infrared excess is found to potentially affect the structure of the infrared Leavitt law.
65

A comprehensive numerical model of Io's chemically-reacting sublimation-driven atmosphere and its interaction with the Jovian plasma torus

Walker, Andrew Charles 29 June 2012 (has links)
Io has one of the most dynamic atmospheres in the solar system due in part to an orbital resonance with Europa and Ganymede that causes intense tidal heating and volcanism. The volcanism serves to create a myriad of volcanic plumes across Io's surface that sustain temporally varying local atmospheres. The plumes primarily eject sulfur dioxide (SO₂) that condenses on Io's surface during the relatively cold night. During the day, insolation warms the surface to temperatures where a global partially collisional atmosphere can be sustained by sublimation from SO₂ surface frosts. Both the volcanic and sublimation atmospheres serve as the source for the Jovian plasma torus which flows past Io at ~57 km/s. The high energy ions and electrons in the Jovian plasma torus interact with Io's atmosphere causing atmospheric heating, chemical reactions, as well as altering the circumplanetary winds. Energetic ions which impact the surface can sputter material and create a partially collisional atmosphere. Simulations suggest that energetic ions from the Jovian plasma cannot penetrate to the surface when the atmospheric column density is greater than 10¹⁵ cm⁻². These three mechanisms for atmospheric support (volcanic, sublimation, and sputtering) all play a role in supporting Io's atmosphere but their relative contributions remain unclear. In the present work, the Direct Simulation Monte Carlo (DSMC) method is used to simulate the interaction of Io's atmosphere with the Jovian plasma torus and the results are compared to observations. These comparisons help constrain the relative contributions of atmospheric support as well as highlight the most important physics in Io's atmosphere. These rarefied gas dynamics simulations improve upon earlier models by using a three-dimensional domain encompassing the entire planet computed in parallel. The effects of plasma heating, planetary rotation, inhomogeneous surface frost, molecular residence time of SO₂ on the exposed non-frost surface, and surface temperature distribution are investigated. Circumplanetary flow is predicted to develop from the warm dayside toward the cooler nightside. Io's rotation leads to a highly asymmetric frost surface temperature distribution (due to the frost's high thermal inertia) which results in circumplanetary flow that is not axi-symmetric about the subsolar point. The non-equilibrium thermal structure of the atmosphere, specifically vibrational and rotational temperatures, is also examined. Plasma heating is found to significantly inflate the atmosphere on both the dayside and nightside. The plasma energy flux causes high temperatures at high altitudes, but plasma energy depletion through the dense gas column above the warmest frost permits gas temperatures cooler than the surface at low altitudes. A frost map (Douté et al., 2001) is used to control the sublimated flux of SO₂ which can result in inhomogeneous column densities that vary by nearly a factor of four for the same surface temperature. A short residence time for SO₂ molecules on the non-frost component is found to smooth lateral atmospheric inhomogeneities caused by variations in the surface frost distribution, creating an atmosphere that looks nearly identical to one with uniform frost coverage. A longer residence time is found to agree better with mid-infrared observations (Spencer et al., 2005) and reproduce the observed anti-Jovian/sub-Jovian column density asymmetry. The computed peak dayside column density for Io agrees with those suggested by Lyman-[alpha] observations (Feaga et al., 2009) assuming a surface frost temperature of 115 K. On the other hand, the peak dayside column density at 120 K is a factor of five larger and is higher than the upper range of observations (Jessup et al., 2004; Spencer et al., 2005). The results of the original DSMC simulations of Io's atmosphere show that the most important and sensitive parameter is the SO₂ surface frost temperature. To improve upon the original surface temperature model, we constrain Io's surface thermal distribution by a parametric study of its thermophysical properties. Io's surface thermal distribution is represented by three thermal units: sulfur dioxide (SO₂) frosts/ices, non-frosts (probably sulfur allotropes and/or pyroclastic dusts), and hot spots. The hot spots included in the thermal model are static high temperature surfaces with areas and temperatures based on Keck infrared observations. Elsewhere, over frosts and non-frosts, the thermal model solves the one-dimensional heat conduction equation in depth into Io's surface and includes the effects of eclipse by Jupiter, radiation from Jupiter, and latent heat of sublimation and condensation. The best fit parameters for the SO₂ frost and non-frost units are found by using a least-squares method and fitting to observations of the Hubble Space Telescope's Space Telescope Imaging Spectrograph (HST STIS) mid- to near-UV reflectance spectra and Galileo photo-polarimeter (PPR) brightness temperature. The thermophysical parameters are the frost Bond albedo, and thermal inertia, as well as the non-frost surface Bond albedo, and thermal inertia. The best fit parameters are found to be [equations] for the SO2 frost surface and [equations] for the non-frost surface. These surface thermophysical parameters are then used as boundary conditions in global atmospheric simulations of Io's sublimation-driven atmosphere using DSMC. The DSMC simulations show that the sub-Jovian hemisphere is significantly affected by the daily solar eclipse. The SO₂ surface frost temperature is found to drop ~5 K during eclipse but the column density falls by a factor of 20 compared to the pre-eclipse column due to the exponential dependence of the SO₂ vapor pressure on the SO₂ surface frost temperature. Supersonic winds exist prior to eclipse but become subsonic during eclipse because the collapse of the atmosphere significantly decreases the day-to-night pressure gradient that drives the winds. Prior to eclipse, the supersonic winds condense on and near the cold nightside and form a highly non-equilibrium oblique shock near the dawn terminator. In eclipse, no shock exists since the gas is subsonic and the shock only reestablishes itself an hour or more after egress from eclipse. Furthermore, the excess gas that condenses on the non-frost surface during eclipse leads to an enhancement of the atmosphere near dawn. The dawn atmospheric enhancement drives winds that oppose those that are driven away from the peak pressure region above the warmest area of the SO₂ frost surface. These opposing winds meet and are collisional enough to form stagnation point flow. The simulations are compared to Lyman-[alpha] observations in an attempt to explain the asymmetry between the dayside atmospheres of the anti-Jovian and sub-Jovian hemispheres. A composite "average dayside atmosphere" is formed from a collisionless simulation of Io's atmosphere throughout an entire orbit. The composite "average dayside" atmosphere without the effect of global winds indicates that the sub-Jovian hemisphere should have lower average column densities than the anti-Jovian hemisphere (with the strongest effect at the sub-Jovian point) due entirely to the diurnally averaged effect of eclipse. Lastly, a particle description of the plasma is coupled with the sophisticated surface thermal model and a final set of global DSMC atmospheric simulations are performed. The particle description of energetic ions from the Jovian plasma torus allows for momentum transfer from the ions to the neutral atmosphere. Also, the energetic ions (or solar photons) can dissociate the neutral atmosphere and cause sputtering of SO₂ on the surface. SO₂ remains the dominant dayside species (>90%) despite being dissociated by ions and photons to form O, O₂, S, and SO. SO₂ remains the dominant atmospheric species on the nightside between dusk and midnight due to sputtering of SO₂ surface frosts by energetic ions as well as the high thermal inertia of SO₂ frosts that cause the surface temperature to cool slowly and thus sublime a thicker SO₂ atmosphere. O₂ becomes the dominant atmospheric species above coldest areas of the surface because it is non-condensable at Io's surface temperatures and other species are sticking to the surface. SO and O are present in similar gas fractions because they are created together via the same ion and photo-dissociation reactions. Sulfur column densities are the lowest throughout the atmosphere because S is created slowly via direct dissociation of SO₂; it is instead created primarily through dissociation of SO. The momentum transfer from the plasma is found to have substantial effect on the global wind patterns. The interaction between the plasma pressure and day-to-night pressure gradient is highly dependent on Io's subsolar longitude. Similar to previous simulations, the westward winds reach higher Mach numbers and wind speeds than the eastward winds. This is because the westward winds are accelerated by a larger day-to-night pressure gradient due to the very cold surface temperatures that exist prior to dawn. Eastward equatorial winds on the nightside are accelerated by the plasma pressure and condense out near the dawn terminator after traveling ~3/4 of the circumference of Io. O₂ is pushed to the nightside by the circumplanetary winds where it builds-up until it reaches an equilibrium column density. On the nightside, O₂ is destroyed by ion dissociation. On the nightside, a shear layer develops between the equatorial eastward winds and stagnant non-condensable species at mid-latitudes. This shear layer generates lateral vorticity which is especially visible in O₂ streamlines. Large cyclones develop in the northern and southern hemispheres and are most apparent in the O₂ wind patterns because other species condense out on the nightside. / text
66

Computation of Collision-Induced Absorption by Simple Molecular Complexes, for Astrophysical Applications

Abel, Martin Andreas 17 July 2012 (has links)
The absorption due to pairs of H₂ molecules is an important opacity source in the atmospheres of various types of planets and cool stars, such as late stars, low mass main sequence stars, brown dwarf stars, cool white dwarf stars, the ambers of the smaller, burnt out main sequence stars, exoplanets, etc., and therefore of special astronomical interest. Astronomers are interested in the outer planets as they still contain primordal matter. Furthermore, recent observations by the Hubble space telescope (in operation since 1990) have revealed several thousand cool white dwarf stars with temperatures of several thousand Kelvin. It is surprising that none of them has temperatures lower than roughly 4000 K. This means that the white dwarf stars have not had enough time to cool down to the temperature of the cosmic background radiation. Astrophysicists believe that this information can be used for an alternative and more accurate method of cosmochronology. However, the emission spectra of cool white dwarf stars differ significantly from the expected blackbody spectra of their cores, largely due to collision-induced absorption by collisional complexes of residual hydrogen and helium in the stellar atmospheres. In order to model the radiative processes in these atmospheres, which have temperatures of several thousand kelvin, one needs accurate knowledge of the induced dipole and potential energy surfaces of the absorbing collisional complexes, such as H₂--H₂, H₂--He, and H₂--H. These come from quantum-chemical calculations, which, for the high temperatures and high photon energies under consideration in this work, need to take into account that the H₂ bonds can be stretched or compressed far from equilibrium length. Since no laboratory measurements for these high temperatures and photon energies exist, one has to undertake \textit{ab initio} calculations which take into account the high vibrational and rotational excitation of the involved hydrogen molecules. However, before one attempts to proceed to higher temperatures and photon energies where no laboratory measurements exist it is good to check that the formalism is correct and reproduces the results at temperatures and photon energies where laboratory measurements exist, that is, at and below room temperature and for photon energies up to about 1.5 eV. In this work a formalism is developed to compute the binary collision-induced absorption of simple molecular complexes up to temperatures of thousands of kelvin and photon energies up to 2.5 eV, properly taking into account vibrational and rotational dependencies of the induced dipole and potential energy surfaces. In order to make the computational effort feasible, the isotropic potenial approximation is employed. The formalism is applied to collisional complexes of H₂--H₂, D₂--D₂, H₂--He, D₂--He, T₂--He, and H₂--H, and compared with existing laboratory measurements. / text
67

Climate modeling of giant planets : the Saturnian seasonal stratosphere

Strong, Shadrian Brittany, 1980- 02 October 2012 (has links)
Not available / text
68

Super-Earth and Sub-Neptune Exoplanets: a First Look from the MEarth Project

Berta, Zachory Kaczmarczyk 09 October 2013 (has links)
Exoplanets that transit nearby M dwarfs allow us to measure the sizes, masses, and atmospheric properties of distant worlds. Between 2008 and 2013, we searched for such planets with the MEarth Project, a photometric survey of the closest and smallest main-sequence stars. This thesis uses the first planet discovered with MEarth, the warm 2.7 Earth radius exoplanet GJ1214b, to explore the possibilities that planets transiting M dwarfs provide. / Astronomy
69

Observing Transiting Exoplanets: Removing Systematic Errors To Constrain Atmospheric Chemistry And Dynamics

Zellem, Robert Thomas January 2015 (has links)
The >1500 confirmed exoplanets span a wide range of planetary masses (~1 M_Earth – 20 M_Jupiter), radii (~0.3 R_Earth – 2 R_Jupiter), semi-major axes (~0.005 – 100 AU), orbital periods (~0.3 – 1 x 10⁵ days), and host star spectral types. The effects of a widely-varying parameter space on a planetary atmosphere's chemistry and dynamics can be determined through transiting exoplanet observations. An exoplanet's atmospheric signal, either in absorption or emission, is on the order of ~0.1% which is dwarfed by telescope-specific systematic error sources up to ~60%. This thesis explores some of the major sources of error and their removal from space- and ground-based observations, specifically Spitzer/IRAC single-object photometry, IRTF/SpeX and Palomar/TripleSpec low-resolution single-slit near-infrared spectroscopy, and Kuiper/Mont4k multi-object photometry. The errors include pointing-induced uncertainties, airmass variations, seeing-induced signal loss, telescope jitter, and system variability. They are treated with detector efficiency pixel-mapping, normalization routines, a principal component analysis, binning with the geometric mean in Fourier-space, characterization by a comparison star, repeatability, and stellar monitoring to get within a few times of the photon noise limit. As a result, these observations provide strong measurements of an exoplanet's dynamical day-to-night heat transport, constrain its CH₄ abundance, investigate emission mechanisms, and develop an observing strategy with smaller telescopes. The reduction methods presented here can also be applied to other existing and future platforms to identify and remove systematic errors. Until such sources of uncertainty are characterized with bright systems with large planetary signals for platforms such as the James Webb Space Telescope, for example, one cannot resolve smaller objects with more subtle spectral features, as expected of exo-Earths.
70

Effect of modified atmosphere packaging on the growth and aflatoxin production by Aspergillus flavus and Aspergillus parasiticus under tropical environmental storage conditions

Ellis, William Otoo January 1993 (has links)
The combined effect of Modified Atmosphere Packaging (MAP) involving gas packaging, oxygen absorbent and other environmental factors to control aflatoxin production by Aspergillus flavus and Aspergillus parasiticus in both synthetic media and peanuts were studied using a process optimization technique termed Response Surface Methodology (RSM). Regression analysis of the data indicated that water activity (a$ sb{ rm w}$), pH, storage temperature, initial concentration of headspace oxygen and inoculum level were all highly significant factors (p 0%). These changes in the barrier characteristics influenced the headspace gas composition within the product and under modified atmospheres hence the level of aflatoxin detected in these stored products. / In conclusion, this study has shown that the combined effect of several "barriers" can be used in conjunction with low oxygen modified atmosphere and high barrier packaging films to inhibit or reduce aflatoxin to safe and acceptable levels, particularly at abusive temperatures encountered during storage.

Page generated in 0.0795 seconds