101 |
The Application of Index Based, Region Segmentation, and Deep Learning Approaches to Sensor Fusion for Vegetation DetectionStone, David L. 01 January 2019 (has links)
This thesis investigates the application of index based, region segmentation, and deep learning methods to the sensor fusion of omnidirectional (O-D) Infrared (IR) sensors, Kinnect sensors, and O-D vision sensors to increase the level of intelligent perception for unmanned robotic platforms. The goals of this work is first to provide a more robust calibration approach and improve the calibration of low resolution and noisy IR O-D cameras. Then our goal was to explore the best approach to sensor fusion for vegetation detection. We looked at index based, region segmentation, and deep learning methods and compared them with a goal of significant reduction in false positives while maintaining reasonable vegetation detection.
The results are as follows:
Direct Spherical Calibration of the IR camera provided a more consistent and robust calibration board capture and resulted in the best overall calibration results with sub-pixel accuracy
The best approach for sensor fusion for vegetation detection was the deep learning approach, the three methods are detailed in the following chapters with the results summarized here.
Modified Normalized Difference Vegetation Index approach achieved 86.74% recognition and 32.5% false positive, with peaks to 80%
Thermal Region Fusion (TRF) achieved a lower recognition rate at 75.16% but reduced false positives to 11.75% (a 64% reduction)
Our Deep Learning Fusion Network (DeepFuseNet) results demonstrated that deep learning approach showed the best results with a significant (92%) reduction in false positives when compared to our modified normalized difference vegetation index approach. The recognition was 95.6% with 2% false positive.
Current approaches are primarily focused on O-D color vision for localization, mapping, and tracking and do not adequately address the application of these sensors to vegetation detection. We will demonstrate the contradiction between current approaches and our deep sensor fusion (DeepFuseNet) for vegetation detection. The combination of O-D IR and O-D color vision coupled with deep learning for the extraction of vegetation material type, has great potential for robot perception. This thesis will look at two architectures: 1) the application of Autoencoders Feature Extractors feeding a deep Convolution Neural Network (CNN) fusion network (DeepFuseNet), and 2) Bottleneck CNN feature extractors feeding a deep CNN fusion network (DeepFuseNet) for the fusion of O-D IR and O-D visual sensors. We show that the vegetation recognition rate and the number of false detects inherent in the classical indices based spectral decomposition are greatly improved using our DeepFuseNet architecture.
We first investigate the calibration of omnidirectional infrared (IR) camera for intelligent perception applications. The low resolution omnidirectional (O-D) IR image edge boundaries are not as sharp as with color vision cameras, and as a result, the standard calibration methods were harder to use and less accurate with the low definition of the omnidirectional IR camera. In order to more fully address omnidirectional IR camera calibration, we propose a new calibration grid center coordinates control point discovery methodology and a Direct Spherical Calibration (DSC) approach for a more robust and accurate method of calibration. DSC addresses the limitations of the existing methods by using the spherical coordinates of the centroid of the calibration board to directly triangulate the location of the camera center and iteratively solve for the camera parameters. We compare DSC to three Baseline visual calibration methodologies and augment them with additional output of the spherical results for comparison. We also look at the optimum number of calibration boards using an evolutionary algorithm and Pareto optimization to find the best method and combination of accuracy, methodology and number of calibration boards. The benefits of DSC are more efficient calibration board geometry selection, and better accuracy than the three Baseline visual calibration methodologies.
In the context of vegetation detection, the fusion of omnidirectional (O-D) Infrared (IR) and color vision sensors may increase the level of vegetation perception for unmanned robotic platforms. A literature search found no significant research in our area of interest. The fusion of O-D IR and O-D color vision sensors for the extraction of feature material type has not been adequately addressed. We will look at augmenting indices based spectral decomposition with IR region based spectral decomposition to address the number of false detects inherent in indices based spectral decomposition alone. Our work shows that the fusion of the Normalized Difference Vegetation Index (NDVI) from the O-D color camera fused with the IR thresholded signature region associated with the vegetation region, minimizes the number of false detects seen with NDVI alone. The contribution of this work is the demonstration of two new techniques, Thresholded Region Fusion (TRF) technique for the fusion of O-D IR and O-D Color. We also look at the Kinect vision sensor fused with the O-D IR camera. Our experimental validation demonstrates a 64% reduction in false detects in our method compared to classical indices based detection.
We finally compare our DeepFuseNet results with our previous work with Normalized Difference Vegetation index (NDVI) and IR region based spectral fusion. This current work shows that the fusion of the O-D IR and O-D visual streams utilizing our DeepFuseNet deep learning approach out performs the previous NVDI fused with far infrared region segmentation. Our experimental validation demonstrates an 92% reduction in false detects in our method compared to classical indices based detection. This work contributes a new technique for the fusion of O-D vision and O-D IR sensors using two deep CNN feature extractors feeding into a fully connected CNN Network (DeepFuseNet).
|
102 |
Étude de techniques d'apprentissage non-supervisé pour l'amélioration de l'entraînement supervisé de modèles connexionnistesLarochelle, Hugo January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
103 |
Prediction of Inter-Frequency Measurements in a LTE Network with Deep Learning / Prediktering av inter-frekvensmätningar i ett LTE-nätverk med Deep LearningHolm, Rasmus January 2018 (has links)
The telecommunications industry faces difficult challenges as more and more devices communicate over the internet. A telecommunications network is a complex system with many parts and some are candidates for further automation. We have focused on interfrequency measurements that are used during inter-frequency handovers, among other procedures. A handover is the procedure when for instance a phone changes the base station it communicates with and the inter-frequency measurements are rather expensive to perform. More specifically, we have investigated the possibility of using deep learning—an ever expanding field in machine learning—for predicting inter-frequency measurements in a Long Term Evolution (LTE) network. We have focused on the multi-layer perceptron and extended it with (variational) autoencoders or modified it through dropout such that it approximate the predictive distribution of a Gaussian process. The telecommunications network consist of many cells and each cell gather its own data. One of the strengths of deep learning models is that they usually increase their performance as more and more data is used. We have investigated whether we do see an increase in performance if we combine data from multiple cells and the results show that this is not necessarily the case. The performances are comparable between models trained on combined data from multiple cells and models trained on data from individual cells. We can expect the multi-layer perceptron to perform better than a linear regression model. The best performing multi-layer perceptron architectures have been rather shallow, 1-2 hidden layers, and the extensions/modifications we have used/done have not shown any significant improvements to warrant their presence. For the particular LTE network we have worked with we would recommend to use shallow multi-layer perceptron architectures as far as deep learning models are concerned.
|
104 |
Non-Parallel Voice Conversion / Non-Parallel Voice ConversionBrukner, Jan January 2020 (has links)
Cílem konverze hlasu (voice conversion, VC) je převést hlas zdrojového řečníka na hlas cílového řečníka. Technika je populární je u vtipných internetových videí, ale má také řadu seriózních využití, jako je dabování audiovizuálního materiálu a anonymizace hlasu (například pro ochranu svědků). Vzhledem k tomu, že může sloužit pro spoofing systémů identifikace hlasu, je také důležitým nástrojem pro vývoj detektorů spoofingu a protiopatření. Modely VC byly dříve trénovány převážně na paralelních (tj. dva řečníci čtou stejný text) a na vysoce kvalitních audio materiálech. Cílem této práce bylo prozkoumat vývoj VC na neparalelních datech a na signálech nízké kvality, zejména z veřejně dostupné databáze VoxCeleb. Práce vychází z moderní architektury AutoVC definované Qianem et al. Je založena na neurálních autoenkodérech, jejichž cílem je oddělit informace o obsahu a řečníkovi do samostatných nízkodimenzionýálních vektorových reprezentací (embeddingů). Cílová řeč se potom získá nahrazením embeddingu zdrojového řečníka embeddingem cílového řečníka. Qianova architektura byla vylepšena pro zpracování audio nízké kvality experimentováním s různými embeddingy řečníků (d-vektory vs. x-vektory), zavedením klasifikátoru řečníka z obsahových embeddingů v adversariálním schématu trénování neuronových sítí a laděním velikosti obsahového embeddingu tak, že jsme definovali informační bottle-neck v příslušné neuronové síti. Definovali jsme také další adversariální architekturu, která porovnává původní obsahové embeddingy s embeddingy získanými ze zkonvertované řeči. Výsledky experimentů prokazují, že neparalelní VC na nekvalitních datech je skutečně možná. Výsledná audia nebyla tak kvalitní případě hi fi vstupů, ale výsledky ověření řečníků po spoofingu výsledným systémem jasně ukázaly posun hlasových charakteristik směrem k cílovým řečníkům.
|
105 |
Konvoluční neuronová síť pro zpracování obrazu / Convolutional neural network for image processingKrajčovičová, Mária January 2015 (has links)
Goal of this Diploma thesis was Convolutional neural network investigation in last years. Diploma thesis also contains information about designing of appropriate Convolutional neural network models and implementation of these models in Java programming language. Result of the thesis are comparison and evaluation of results which were reached from implemented application.
|
106 |
Handling Imbalanced Data Classification With Variational Autoencoding And Random Under-Sampling BoostingLudvigsen, Jesper January 2020 (has links)
In this thesis, a comparison of three different pre-processing methods for imbalanced classification data, is conducted. Variational Autoencoder, Random Under-Sampling Boosting and a hybrid approach of the two, are applied to three imbalanced classification data sets with different class imbalances. A logistic regression (LR) model is fitted to each pre-processed data set and based on its classification performance, the pre-processing methods are evaluated. All three methods shows indications of different advantages when handling class imbalances. For each pre-processed data, the LR-model has is better at correctly classifying minority class observations, compared to a LR-model fitted to the original class imbalanced data sets. Evaluating the overall classification performance, both VAE and RUSBoost shows improving classification results while the hybrid method performs worse for the moderate class imbalanced data and best for the highly imbalanced data.
|
107 |
Comparing Anomaly-Based Network Intrusion Detection Approaches Under Practical AspectsHelmrich, Daniel 07 July 2021 (has links)
While many of the currently used network intrusion detection systems (NIDS) employ signature-based approaches, there is an increasing research interest in the examination of anomaly-based detection methods, which seem to be more suited for recognizing zero-day attacks. Nevertheless, requirements for their practical deployment, as well as objective and reproducible evaluation methods, are hereby often neglected. The following thesis defines aspects that are crucial for a practical evaluation of anomaly-based NIDS, such as the focus on modern attack types, the restriction to one-class classification methods, the exclusion of known attacks from the training phase, a low false detection rate, and consideration of the runtime efficiency. Based on those principles, a framework dedicated to developing, testing and evaluating models for the detection of network anomalies is proposed. It is applied to two datasets featuring modern traffic, namely the UNSW-NB15 and the CIC-IDS-2017 datasets, in order to compare and evaluate commonly-used network intrusion detection methods. The implemented approaches include, among others, a highly configurable network flow generator, a payload analyser, a one-hot encoder, a one-class support vector machine, and an autoencoder. The results show a significant difference between the two chosen datasets: While for the UNSW-NB15 dataset several reasonably well performing model combinations for both the autoencoder and the one-class SVM can be found, most of them yield unsatisfying results when the CIC-IDS-2017 dataset is used. / Obwohl viele der derzeit genutzten Systeme zur Erkennung von Netzwerkangriffen (engl. NIDS) signaturbasierte Ansätze verwenden, gibt es ein wachsendes Forschungsinteresse an der Untersuchung von anomaliebasierten Erkennungsmethoden, welche zur Identifikation von Zero-Day-Angriffen geeigneter erscheinen. Gleichwohl werden hierbei Bedingungen für deren praktischen
Einsatz oft vernachlässigt, ebenso wie objektive und reproduzierbare Evaluationsmethoden. Die folgende Arbeit definiert Aspekte, die für eine praxisorientierte Evaluation unabdingbar sind. Dazu zählen ein Schwerpunkt auf modernen Angriffstypen, die Beschränkung auf One-Class Classification Methoden, der Ausschluss von bereits bekannten Angriffen aus dem Trainingsdatensatz,
niedrige Falscherkennungsraten sowie die Berücksichtigung der Laufzeiteffizienz. Basierend auf diesen Prinzipien wird ein Rahmenkonzept vorgeschlagen, das für das Entwickeln, Testen und Evaluieren von Modellen zur Erkennung von Netzwerkanomalien bestimmt ist. Dieses wird auf zwei Datensätze mit modernem Netzwerkverkehr, namentlich auf den UNSW-NB15 und den CIC-IDS-
2017 Datensatz, angewendet, um häufig genutzte NIDS-Methoden zu vergleichen und zu evaluieren.
Die für diese Arbeit implementierten Ansätze beinhalten, neben anderen, einen weit konfigurierbaren Netzwerkflussgenerator, einen Nutzdatenanalysierer, einen One-Hot-Encoder, eine One-Class Support Vector Machine sowie einen Autoencoder. Die Resultate zeigen einen großen Unterschied zwischen den beiden ausgewählten Datensätzen: Während für den UNSW-NB15 Datensatz verschiedene angemessen gut funktionierende Modellkombinationen, sowohl für den Autoencoder als
auch für die One-Class SVM, gefunden werden können, bringen diese für den CIC-IDS-2017 Datensatz meist unbefriedigende Ergebnisse.
|
108 |
Fault Detection in Mobile Robotics using Autoencoder and Mahalanobis DistanceMortensen, Christian January 2021 (has links)
Intelligent fault detection systems using machine learning can be applied to learn to spot anomalies in signals sampled directly from machinery. As a result, expensive repair costs due to mechanical breakdowns and potential harm to humans due to malfunctioning equipment can be prevented. In recent years, Autoencoders have been applied for fault detection in areas such as industrial manufacturing. It has been shown that they are well suited for the purpose as such models can learn to recognize healthy signals that facilitate the detection of anomalies. The content of this thesis is an investigation into the applicability of Autoencoders for fault detection in mobile robotics by assigning anomaly scores to sampled torque signals based on the Autoencoder reconstruction errors and the Mahalanobis distance to a known distribution of healthy errors. An experiment was carried out by training a model with signals recorded from a four-wheeled mobile robot executing a pre-defined diagnostics routine to stress the motors, and datasets of healthy samples along with three different injected faults were created. The model produced overall greater anomaly scores for one of the fault cases in comparison to the healthy data. However, the two other cases did not yield any difference in anomaly scores due to the faults not impacting the pattern of the signals. Additionally, the Autoencoders ability to isolate a fault to a location was studied by examining the reconstruction errors faulty samples determine whether the errors of signals originating from the faulty component could be used for this purpose. Although we could not confirm this based on the results, fault isolation with Autoencoders could still be possible given more representative signals.
|
109 |
Efficient Edge Intelligence In the Era of Big DataJun Hua Wong (11013474) 05 August 2021 (has links)
Smart wearables, known as emerging paradigms for vital big data capturing, have been attracting intensive attentions. However, one crucial problem is their power-hungriness, i.e., the continuous data streaming consumes energy dramatically and requires devices to be frequently charged. Targeting this obstacle, we propose to investigate the biodynamic patterns in the data and design a data-driven approach for intelligent data compression. We leverage Deep Learning (DL), more specifically, Convolutional Autoencoder (CAE), to learn a sparse representation of the vital big data. The minimized energy need, even taking into consideration the CAE-induced overhead, is tremendously lower than the original energy need. Further, compared with state-of-the-art wavelet compression-based method, our method can compress the data with a dramatically lower error for a similar energy budget. Our experiments and the validated approach are expected to boost the energy efficiency of wearables, and thus greatly advance ubiquitous big data applications in era of smart health.<br><div>In recent years, there has also been a growing interest in edge intelligence for emerging instantaneous big data inference. However, the inference algorithms, especially deep learning, usually require heavy computation requirements, thereby greatly limiting their deployment on the edge. We take special interest in the smart health wearable big data mining and inference. <br></div><div><br></div><div>Targeting the deep learning’s high computational complexity and large memory and energy requirements, new approaches are urged to make the deep learning algorithms ultra-efficient for wearable big data analysis. We propose to leverage knowledge distillation to achieve an ultra-efficient edge-deployable deep learning model. More specifically, through transferring the knowledge from a teacher model to the on-edge student model, the soft target distribution of the teacher model can be effectively learned by the student model. Besides, we propose to further introduce adversarial robustness to the student model, by stimulating the student model to correctly identify inputs that have adversarial perturbation. Experiments demonstrate that the knowledge distillation student model has comparable performance to the heavy teacher model but owns a substantially smaller model size. With adversarial learning, the student model has effectively preserved its robustness. In such a way, we have demonstrated the framework with knowledge distillation and adversarial learning can, not only advance ultra-efficient edge inference, but also preserve the robustness facing the perturbed input.</div>
|
110 |
Comparing Julia and Python : An investigation of the performance on image processing with deep neural networks and classificationAxillus, Viktor January 2020 (has links)
Python is the most popular language when it comes to prototyping and developing machine learning algorithms. Python is an interpreted language that causes it to have a significant performance loss compared to compiled languages. Julia is a newly developed language that tries to bridge the gap between high performance but cumbersome languages such as C++ and highly abstracted but typically slow languages such as Python. However, over the years, the Python community have developed a lot of tools that addresses its performance problems. This raises the question if choosing one language over the other has any significant performance difference. This thesis compares the performance, in terms of execution time, of the two languages in the machine learning domain. More specifically, image processing with GPU-accelerated deep neural networks and classification with k-nearest neighbor on the MNIST and EMNIST dataset. Python with Keras and Tensorflow is compared against Julia with Flux for GPU-accelerated neural networks. For classification Python with Scikit-learn is compared against Julia with Nearestneighbors.jl. The results point in the direction that Julia has a performance edge in regards to GPU-accelerated deep neural networks. With Julia outperforming Python by roughly 1.25x − 1.5x. For classification with k-nearest neighbor the results were a bit more varied with Julia outperforming Python in 5 out of 8 different measurements. However, there exists some validity threats and additional research is needed that includes all different frameworks available for the languages in order to provide a more conclusive and generalized answer.
|
Page generated in 0.036 seconds