• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An experimental approach to Automatic Exposure Control testing.

McLeod, Robert William January 2009 (has links)
A New Zealand Qualified Health Physicist (QHP) is required, under the Radiation Protection Act of 1965 and the Radiation Protection Regulations 1982, to perform auditing compliance tests on x-ray equipment at regular intervals to ensure that this equipment conforms to the Code of Safe Practice with the use of x-rays. The protocol for these tests must be approved by the National Radiation Laboratory (NRL). One of these test protocols sets out the requirements for the functionality testing of the x-ray machine Automatic Exposure Control (AEC). The current NRL protocol for AEC testing is based on the radiographic film environment (NRL C5 1994). This protocol was tested to determine its applicability to the digital computed radiography (CR) imaging systems which are replacing screen-film systems. To begin this process a comparison of the different exposure indexes for each image medium was required. This proved to be achievable using a system of exposure dose comparison. The AEC test process for both image modalities follows identical requirements but differ slightly in the test methods used to achieve these. The most significant finding throughout this stage was not the differences between protocols but was the requirement to achieve consistent exposure index values over the clinical kVp range for each image medium. This requirement, applicable to any x-ray image medium, became the focus of this thesis. The thesis has explored through experimentation, the effect of optimisation of AEC kVp compensation for the variable kVp response of an image medium, on image consistency. At Christchurch Hospital where this investigation took place the work has shown that the performance of AEC devices can be optimised to improve image consistency, indicated by a more consistent exposure index over the clinical kVp range. The optimisation process also achieves a more consistent dose response to the image plate. A dose variation of 8.3% from the average was achieved compared to 26% in the unoptimised version. No clinically significant changes to image quality were apparent in test images. Under these conditions it was found that AEC functionality could be assessed solely by the measurement of AEC dose to the image plate (IP). Use of this test method provides quantifiable time management benefits for the Medical Physicist and for the radiology departments in which they work. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1369625 / Thesis (M.Sc.(Med.Physics)) - University of Adelaide, School of Chemistry and Physics, 2009
2

Digital Mammography with a Photon Counting Detector in a Scanned Multislit Geometry

Åslund, Magnus January 2007 (has links)
Mammography screening aims to reduce the number of breast cancer deaths by early detection of the disease, which is one of the leading causes of deaths for middle aged women in the western world. The risk from the x-ray radiation in mammography is relatively low but still a factor in the benefit-risk ratio of screening. The characterization and optimization of a digital mammography system is presented in this thesis. The investigated system is shown to be highly dose efficient by employing a photon counting detector in a scanning multislit geometry. A novel automatic exposure control (AEC) is proposed and validated in clinical practise. The AEC uses the leading detector edge to measure the transmission of the breast. The exposure is modulated by altering the scan velocity during the scan. A W-Al anode-filter combination is proposed. The characterization of the photon counting detector is performed using the detective quantum efficiency. The effect of the photon counting detector and the multislit geometry on the measurement method is studied in detail. It is shown that the detector has a zero-frequency DQE of over 70\% and that it is quantum limited even at very low exposures. Efficient rejection of image-degrading secondary radiation is fundamental for a dose efficient system. The efficiency of the scatter rejection techniques currently used are quantified and compared to the multislit geometry. A system performance metric with its foundation in statistical decision theory is discussed. It is argued that a photon counting multislit system can operate at approximately half the dose compared to several other digital mammography techniques. / QC 20100825
3

Efficiency and reproducibility in pulmonary nodule detection in simulated dose reduction lung CT images / 線量低減シミュレーション肺CT画像における肺結節の検出効率と再現性

Kubo, Takeshi 23 July 2019 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(医学) / 乙第13270号 / 論医博第2184号 / 新制||医||1038(附属図書館) / 京都大学大学院医学研究科内科系専攻 / (主査)教授 溝脇 尚志, 教授 平井 豊博, 教授 伊達 洋至 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
4

Development of a software based automatic exposure control system for use in image guided radiation therapy

Morton, Daniel R 12 August 2013 (has links)
Modern image guided radiation therapy involves the use of an isocentrically mounted imaging system to take radiographs of a patient's position before the start of each treatment. Image guidance helps to minimize errors associated with a patients setup, but the radiation dose received by patients from imaging must be managed to ensure no additional risks. The Varian On-Board Imager (OBI) (Varian Medical Systems, Inc., Palo Alto, CA) does not have an automatic exposure control system and therefore requires exposure factors to be manually selected. Without patient specific exposure factors, images may become saturated and require multiple unnecessary exposures. A software based automatic exposure control system has been developed to predict optimal, patient specific exposure factors. The OBI system was modelled in terms of the x-ray tube output and detector response in order to calculate the level of detector saturation for any exposure situation. Digitally reconstructed radiographs are produced via ray-tracing through the patients' volumetric datasets that are acquired for treatment planning. The ray-trace determines the attenuation of the patient and subsequent x-ray spectra incident on the imaging detector. The resulting spectra are used in the detector response model to determine the exposure levels required to minimize detector saturation. Images calculated for various phantoms showed good agreement with the images that were acquired on the OBI. Overall, regions of detector saturation were accurately predicted and the detector response for non-saturated regions in images of an anthropomorphic phantom were calculated to generally be within 5 to 10 % of the measured values. Calculations were performed on patient data and found similar results as the phantom images, with the calculated images being able to determine detector saturation with close agreement to images that were acquired during treatment. Overall, it was shown that the system model and calculation method could potentially be used to predict patients' exposure factors before their treatment begins, thus preventing the need for multiple exposures. / Graduate / 0760 / 0574 / 0756
5

Automatic Exposure Control During Computed Tomography Scans of the Head: Effects on Dose and Image Quality

Osborne, Stephen D 01 December 2019 (has links)
Automatic exposure control (AEC) is effective at reducing potentially harmful radiation doses without sacrificing image quality for many types of computed tomography (CT) scans. However, there is a need for more information regarding the use of AEC for CT head scans. This study was conducted at Johnson County Community Hospital in Mountain City, TN. Preexisting adult CT head scans (n)60 were randomly selected to form 2 stratified samples, (n)30 each. One sample used a standard protocol, and the other used a protocol with a mA-modulated AEC system, Siemens CARE Dose 4D. Causal-comparative analyses were conducted, and it was determined that AEC was effective at maintaining subjective image quality while reducing radiation doses an average of 38% for adult CT head scans. It was concluded that using AEC was an effective tool to optimize radiation doses for adult CT head scans in one particular setting, but more research on this topic is needed.
6

Imaging and Object Detection under Extreme Lighting Conditions and Real World Adversarial Attacks

Xiangyu Qu (16385259) 22 June 2023 (has links)
<p>Imaging and computer vision systems deployed in real-world environments face the challenge of accommodating a wide range of lighting conditions. However, the cost, the demand for high resolution, and the miniaturization of imaging devices impose physical constraints on sensor design, limiting both the dynamic range and effective aperture size of each pixel. Consequently, conventional CMOS sensors fail to deliver satisfactory capture in high dynamic range scenes or under photon-limited conditions, thereby impacting the performance of downstream vision tasks. In this thesis, we address two key problems: 1) exploring the utilization of spatial multiplexing, specifically spatially varying exposure tiling, to extend sensor dynamic range and optimize scene capture, and 2) developing techniques to enhance the robustness of object detection systems under photon-limited conditions.</p> <p><br></p> <p>In addition to challenges imposed by natural environments, real-world vision systems are susceptible to adversarial attacks in the form of artificially added digital content. Therefore, this thesis presents a comprehensive pipeline for constructing a robust and scalable system to counter such attacks.</p>

Page generated in 0.1135 seconds