• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • Tagged with
  • 14
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Autotaxin, lysophosphatidate and taxol resistance

Samadi, Nasser Unknown Date
No description available.
2

Autotaxin, lysophosphatidate and taxol resistance

Samadi, Nasser 11 1900 (has links)
First-line treatment of breast and other cancers with Taxol is compromised by resistance in up to 40% of patients. To improve chemotherapy, it is vital to understand how Taxol resistance develops and to overcome this. Autotaxin (ATX) promotes cancer cell survival, growth, migration, invasion and metastasis. ATX converts extracellular lysophosphatidylcholine (LPC) into lysophosphatidate (LPA). As these lipids have been reported to affect cell signaling through their own G-protein-coupled receptors, ATX could modify the balance of this signaling. Also, ATX affects cell adhesion independently of its catalytic activity, We first investigated the interactions of ATX, LPC and LPA on the apoptotic effects of Taxol, which is commonly used in breast cancer treatment. LPC had no significant effect on Taxol-induced apoptosis in MCF-7 breast cancer cells, which do not secrete significant ATX. Addition of incubation medium from MDA-MB-435 melanoma cells, which secrete ATX, or recombinant ATX enabled LPC to inhibit Taxol-induced apoptosis of MCF-7 cells. Inhibiting ATX activity blocked this protection against apoptosis. We conclude that LPC has no significant effect in protecting MCF-7 cells against Taxol treatment unless it is converted to LPA by ATX. LPA strongly antagonized Taxol-induced apoptosis through stimulating phosphatidylinositol 3-kinase and inhibiting ceramide formation. LPA also partially reversed the Taxol-induced arrest in the G2/M phase of the cell cycle. Then, we described a novel action of LPA, which by activating phosphatidylinositol 3-kinase increases the expression of glycogen synthase kinase-3 and survivin. Survivin is an anti-apoptotic protein, which also increases the dynamicity of microtubules. Survivin decreased the effectiveness of Taxol in stabilizing microtubules and enabled MCF-7 breast cancer cells to escape from Taxol-induced arrest in G2/M and consequent cell death. Our work showed that inhibiting ATX activity and LPA-mediated signaling can reverse the resistance to Taxol-induced cell death. Our results support the hypothesis that therapeutic inhibition of ATX activity, which results in less LPA production, or inhibition of LPA signalling could improve the efficacy of Taxol as a chemotherapeutic agent for cancer treatment. / Medical Sciences - Laboratory Medicine and Pathology
3

Autotaxin promotes cancer cell invasion via the lysophosphatidic acid receptor 4

Harper, Kelly January 2010 (has links)
Tumor metastasis is a fundamental property of malignant cancer cells and the major cause of death in cancer patients. Recent studies indicate that tumor cell invasion and metastasis may be initiated by the formation of the actin-rich cell protrusions with ECM degradation activity, invadopodia. However, despite extensive research on the biology of invadopodia, very little is known about their specific inducers during tumor progression. Autotaxin (ATX) is a secreted lysophospholipase whose expression levels within tumors correlates strongly with their aggressiveness and invasiveness. ATX produces lyosophosphatidic acid (LPA), a phospholipid with known tumor promoting functions that acts through the G-protein coupled receptors, LPA[subscript 1-6] . Recently, overexpression of ATX and LPA receptors (LPA[subscript 1-3]) has been linked to increased tumor invasion and metastasis in vivo , however, the role of other LPA receptors (LPA[subscript 4-6]) as well as the exact mechanisms by which ATX induces tumor metastasis remain poorly characterized. In order to determine the involvement of ATX and LPA in invadopodia production, we used the fibrosarcoma HT-1080 cells stably transfected with ATX or shRNA targeting ATX in fluorescent matrix degradation assays. Our results demonstrate that ATX is implicated in the production of invadopodia resulting in an increase in both their formation and function. Using LPC or LPA, the substrate and product of ATX, we further show that invadopodia production is dependent on the production of LPA from LPC. Among the LPA receptors, LPA 4 has the highest expression in HT1080 cells. Using LPA[subscript 4] shRNA as well as agonists and inhibitors of the cAMP pathway, we provide evidence that LPA[subscript 4] signaling through the cAMP-EPAC-Rap1 axis, regulates invadopodia formation downstream of ATX. Furthermore, inhibition of Rac1, a known effector of Rap1 and invadopodia formation, abolished EPAC-induced invadopodia production, suggesting downstream participation of Rac1. Finally, results using LPA[subscript 4] shRNA support the requirement of this receptor for in vitro cell invasion and in vivo metastasis formation. Our results suggest that ATX through LPA[subscript 4] is a strong inducer of invadopodia formation that correlates with the ability of the cells to invade and metastasize. This study also revealed an unexpected signaling pathway for cell invasion involving LPA[subscript 4]-driven cAMP production and subsequent activation of the EPAC-Rap1-Rac1 axis.
4

Propriétés anti-inflammatoires de facteurs produits par le tissu adipeux - Applications potentielles dans la neurodégénérescence / Anti-Inflammatory Properties of Factors Produced By the Fat Tissue - Potential Applications in Neurodegeneration

Parimisetty, Avinash 19 June 2015 (has links)
L'obésité est l'un des plus grands défis de santé publique du 21ème siècle et est considérée comme un facteur de risque majeur pour la santé. L'obésité est responsable de l'apparition de divers troubles, notamment du diabète, des maladies cardiovasculaires et de certains cancers. Le tissu adipeux (TA) est un organe endocrine très actif qui a une activité sécrétoire intense produisant un assortiment de plus de 600 facteurs qui ont des activités biologiques variées. Certains de ces facteurs sont appelés adipocytokines et font l'objet d'un intérêt particulier dans les recherches récentes sur le métabolisme et les pathologies associées. De nombreuses données sur les adipocytokines suggèrent fortement que le tissu adipeux est un élément clé dans le développement d'une inflammation chronique. De nombreuses maladies neurodégénératives chroniques telles que la sclérose latérale amyotrophique, la maladie d'Alzheimer et la maladie de Parkinson ont été associées à une inflammation du système nerveux central (SNC), dans lequel la microglie et les astrocytes (cellules gliales) jouent un rôle déterminant. L'autotaxin (ATX) et l'adiponectine (ADIPO) sont des médiateurs sécrétées par le TA. Le rôle de ces médiateurs dans les activités métaboliques a été bien étudié, mais leur rôle potentiel ainsi que les mécanismes précis dans la vulnérabilité du CNS restent à déterminer. Ici, nous proposons d'utiliser, in vivo, deux stimuli inflammatoires distincts le lipopolysaccharide (LPS) et le triméthylétain (TMT) pour caractériser l'expression de médiateurs de l'inflammation du SNC chez la souris. Une injection intrapéritonéale (ip) aiguë de LPS (100 μg/kg de poids corporel) mime une infection bactérienne Gram négative, tandis que l'injection ip aiguë de TMT (2 mg/kg de poids corporel), induit une neurodégénérescence hippocampique. Les microglies et les astrocytes sont les principales sources de facteurs inflammatoires dans le cerveau. Afin de rechercher, in vitro, le rôle de l'ATX et de l'ADIPO sur ces cellules dans un état inflammatoire et de stress oxydatif, nous avons généré des tansfectants stables sur-exprimant l'ATX dans des cellules microgliales murines (BV2) et l'ADIPO dans des cellules astrocytaires murines (CLTT). Les clones BV2 et CLTT surexprimant ces facteurs ont été traitées avec du LPS (1 μg/ml) et du H2O2 (100μM). Nos résultats in vivo ont démontré que l'ATX et l'ADIPO sont exprimés dans le cerveau et que le LPS pourrait induire une réponse neuroinflammatoire transitoire dans trois régions distinctes du cerveau l'hippocampe (HIP), le cortex (COR) et le cervelet (CER). Il a été également constaté qu'à cette dose modérée de 100μg de LPS / kg de poids corporel de la souris, la microglie et les astrocytes ne sont pas activés dans le cerveau (Projet-1). Nos résultats in vitro démontrent les effets anti-inflammatoires de l'ATX dans les cellules microgliales observables par la baisse d'expression des marqueurs d'activation microgliale (CD11b, CD14, CD80 et CD86) et d'expression et de production de cytokines pro-inflammatoires (TNF-α et IL-6) (Project-2). Nous avons montré que l'ADIPO a un rôle anti-oxydant dans les astrocytes via l'atténuation significative de ROS, une inhibition d'enzymes pro-oxydantes (iNOS et la COX-2) et une régulation positive d'enzymes anti-oxydantes (SOD et CAT) (Projet-3). Dans l'ensemble, ces résultats suggèrent qu'une inflammation périphérique induite par une infection ne provoque pas de neurodégénérescence (à moins d'une infection importante), mais pourrait sensibiliser les cellules gliales et augmenter leur réponse à la stimulation suivante. L'ATX et l'ADIPO pourraient jouer un rôle dans la régulation de la neuroinflammation en régulant l'activation gliale dans un contexte de stress. Des travaux supplémentaires seront nécessaires afin de mieux comprendre les mécanismes moléculaires régulant l'inflammation du SNC et aboutir à de nouvelles stratégies thérapeutiques pour combattre les maladies neurodégénératives. / Globally obesity is one of the greatest public health challenges of 21st century, and is considered a major health risk factor. Obesity is responsible for the onset of various kinds of disorders including diabetes, cardiovascular diseases and cancer. Adipose tissue (AT) is a highly active endocrine organ which has intense secretory activity producing an assortment of over 600 factors that have versatile biological activities. Some of these factors are named adipocytokines and have gain an intensive focus on current metabolic and disease recent research. Accumulating data on adipocytokine research strongly suggest that adipose tissue is the key player in promoting chronic inflammation. Many chronic neurodegenerative diseases such as Amyotrophic lateral sclerosis, Alzheimer’s and Parkinson’s diseases have been associated with inflammation in the Central Nervous System (CNS) in which microglia and astrocytes (glial cells) play a decisive role. Autotaxin (ATX) and Adiponectin (ADIPO) are mediators secreted by the AT. The role of these mediators in metabolic activities have been well studied but the potential role of these adipocyte secreted factors and its precise mechanisms in CNS vulnerability remains to be determined. Here we used, in vivo, two distinct inflammatory stimuli, lipopolysaccharide (LPS) and trimethyltin (TMT), to characterize the expression of inflammatory mediators in mouse CNS. Acute intraperitoneal (ip) injection of LPS (100μg/Kg bwt) mimics gram negative bacterial infection, while acute ip injection of organometal TMT (2mg/kg bwt), induces hippocampal neurodegeneration. Microglia and astrocytes are the major source of inflammatory factors in the brain. To investigate, in vitro, the role of ATX and ADIPO in inflammatory and oxidative stress condition, we generated stable over-expressing transfectant in murine microglia BV2 cells for ATX and murine astrocyte CLTT cells for ADIPO. BV2 and CLTT stably transfected overexpressing clones were treated with LPS (1 μg/mL) and H2O2 (100μM). Our in vivo results demonstrated that ATX and ADIPO were expressed in the brain and LPS induced a transient neuroinflammatory response in three distinct regions of the brain hippocampus (HIP), cortex (COR) and cerebellum (CER). Besides this it was also found that with this mild dosage of 100 μg LPS/Kg bwt of mice, microglia and astrocytes were not activated in the brain (Project-1). Our in vitro results authenticate the anti-inflammatory effects of ATX in microglial cells demonstrated by the downregulation of microglial activation markers (CD11b, CD14, CD80 and CD86) and pro-inflammatory cytokine expression and secretion (TNF-α and IL-6) (Project-2). Likewise, ADIPO put forth its anti-oxidant role in astrocyte cells mediated via significant mitigation of ROS, and as well by the significant down and upregulation of pro-oxidative inducible nitric oxide synthase (iNOS) and cyclooxygenase-2(COX-2) and anti-oxidative enzymes mRNA expression levels superoxide dismutase (SOD) and catalase (CAT) respectively (Project-3). Overall these results suggest that peripheral inflammation induced by infection will not induce neurodegeneration (unless a massive infection) but could prime the glial cells and make them more responsive to the next stimulation. ATX and ADIPO may play a role in the regulation of neuroinflammation by regulating glial activation in stressed situations. Further investigations will be needed to better understand the molecular mechanisms regulating brain inflammation and lead to new therapeutic strategies to combat neurodegenerative diseases.
5

Autotaxin: A Regulator of Oligodendrocyte Differentiation

Yuelling, Larra 01 January 2010 (has links)
In order for oligodendrocyte progenitor cells (OPCs) to differentiate into fully mature, myelinating oligodendrocytes, they must be specified at the correct times and undergo coordinated changes in both gene expression and morphology. As oligodendrocytes differentiate, they transition from a bipolar morphology into a morphology characterized by a complex network of multiple processes, which will eventually generate membranous structures necessary for myelination of axonal segments. As changes are observed in cellular morphology, oligodendrocytes also undergo changes in their gene expression profile and express genes necessary for both early and later stages of development such as olig1 and myelin basic protein (mbp), respectively. Data from our laboratory demonstrate that autotaxin (ATX), also referred to as phosphodiesterase Iα/autotaxin (PD-Iα/ATX), is involved in all of these processes as a multifunctional protein by regulating lysophospholipid signaling and cell-extracellular matrix interactions. Previously, our laboratory has identified ATX as an oligodendrocyte-secreted factor present in the extracellular environment that via a newly-identified functional domain, named the MORFO domain (modulator of oligodendrocyte remodeling and focal adhesion organization), can regulate adhesion of oligodendrocytes to naturally occurring extracellular matrix (ECM) proteins and ultimately the establishment of the oligodendrocyte’s complex process network. In vitro data presented in this dissertation suggest that lysophosphatidic acid (LPA), via production from ATX’s well characterized lysophospholipase D (lysoPLD) domain, can induce the expression of myelin basic protein (mbp) and the establishment of membranous structures by differentiating oligodendrocytes, both necessary for the initial stages of myelination. Interested in relating these functions to an in vivo model and due to the early embryonic lethality of atx-null mice, we utilized the zebrafish as an in vivo model. The in vivo data presented in this dissertation demonstrate that atx expression in the zebrafish is evolutionarily conserved within vertebrates. Interestingly, in both mouse and the zebrafish, atx was found expressed by cells of the cephalic floor plate in addition to differentiating oligodendrocytes. Functionally the in vivo data presented in this dissertation confirmed ATX’s role in stimulating mbp expression during later stages of oligodendrocyte development. In addition, a novel function for ATX was revealed by the studies undertaken as part of this dissertation that has never been described before. More specifically, based on the timing of atx expression and the phenotype seen upon atx knock-down, the data presented here suggest that ATX, released by the cephalic floor plate, regulates early oligodendrocyte development and/or specification. Taken together, these data identify ATX as a major regulator for early as well as late developmental stages of the oligodendrocyte lineage.
6

LYSOPHOSPHATIDIC ACID PRODUCTION AND SIGNALING IN PLATELETS

Fulkerson, Zachary Bennett 01 January 2011 (has links)
Lysophosphatidic acid (LPA) belongs to a class of extracellular lipid signaling molecules. In the vasculature, LPA may regulate platelet activation and modulate endothelial and smooth muscle cell function. LPA has therefore been proposed as a mediator of cardiovascular disease. The bulk of circulating LPA is produced from plasma lysophosphatidylcholine (LPC) by autotaxin (ATX), a secreted lysophospholipase D (lysoPLD). Early studies suggest that some of the production of circulating LPA is platelet-dependent. ATX possesses an N-terminal somatomedin B-like domain suggesting the hypothesis that ATX interacts with platelet integrins which may localize ATX to substrate in the membrane and/or alter the catalytic activity of ATX. Using static adhesion and soluble binding assays we found that ATX does indeed bind to platelets and cultured mammalian cells in an integrin-dependent manner which is blocked by integrin function-blocking peptides and antibodies. This binding increases both the activity of ATX and localization of its product, LPA, to the platelet/cell membrane. LPA is generally stimulatory to human platelets although platelets from a small population of donors are refractory to LPA stimulation. Likewise LPA is inhibitory to murine platelets. We previously found that LPA receptor pan-antagonists reduce agonist-induced platelet activation, and partial stimulation of LPA5 specifically increases platelet activation in humans. Since both LPA5 and LPA4 are present at significant levels in human platelets, we hypothesized that LPA4 is responsible for an inhibitory pathway and LPA5 is responsible for an inhibitory pathway. We used mice deficient in LPA4 to test this model. Isolated platelet function tests revealed no major difference between lpa4-/- mice compared with WT mice although lpa4-/- mice were more prone to FeCl3-induced thrombosis. Paradoxically, chimeric mice reconstituted with lpa4-/- deficient bone marrow derived cells were protected from thrombosis. These discrepancies may be explained by involvement of endothelial cells and the relative scarcity of LPA receptors in murine platelets compared with human platelets. Taken together, these results demonstrate two critical regulators of LPA signaling and open up new avenues to further our understanding of atherothrombosis.
7

Autotaxin in Central Nervous System Development and Disease

Wheeler, Natalie A 01 January 2016 (has links)
During development, oligodendrocytes (OLGs), the myelinating cells of the central nervous system (CNS), undergo a stepwise progression during which OLG progenitors, specified from neural stem/progenitor cells, differentiate into fully mature myelinating OLGs. This progression along the OLG lineage is characterized by well-synchronized changes in morphology and gene expression patterns. The studies presented in this dissertation identified the extracellular factor Autotaxin (ATX) as a novel upstream signal modulating HDAC1/2 activity and gene expression in cells of the OLG lineage. Using the zebrafish as an in vivo model system, as well as rodent primary OLG cultures, this functional property of ATX was found to be mediated by its lysoPLD activity, which has been well-characterized to generate the lipid signaling molecule lysophosphatidic acid (LPA). LPA binds to Gprotein-coupled LPA receptors (LPARs) on the surface of OLGs to initiate downstream signaling events. ATX’s lysoPLD activity was found to modulate HDAC1/2 regulated gene expression during a time window coinciding with the transition from OLG progenitor to early differentiating OLG. When looking further downstream of the ATX-LPA axis, down-regulation of LPA receptor 6 (LPA6) was found to reduce the expression of OLG differentiation genes as well as the overall process network area of OLGs. Thus, LPA6 plays a role in both the gene expression and morphology changes seen in OLG differentiation. These findings prove useful for future therapeutic targets needed for demyelinating diseases of the CNS such as Multiple Sclerosis (MS), in which OLGs fail to differentiate into mature OLGs, needed for remyelination. Additionally, white matter injury has been frequently reported in HIV+ patients. Previous studies showed that HIV-1 Tat (transactivator of transcription), a viral protein that is produced and secreted by HIV-infected cells, is a toxic factor to OLGs. We show here that Tat treatment reduces the expression of OLG differentiation genes and the overall process network area of OLGs. Additionally, Tat-treated OLGs have reduced ATX lysoPLD activity and there is a physical interaction between Tat and ATX. Together, these data strongly suggest functional implications of Tat blocking ATX’s lysoPLD activities and thus the ATX-LPA signaling axis proves to play a significant role in the development of OLGs.
8

Inflammation du tissu adipeux et vulnérabilité du système nerveux central / Inflammation of adipose tissue and vulnerability of central nervous system

Awada, Rana 07 October 2011 (has links)
L'obésité est depuis quelques années reconnue comme un des fléaux du XXIe siècle en affectant environ 10% de la population adulte mondiale. Le passage de l'obésité au stade de pandémie est le résultat de multiples facteurs dont une mauvaise hygiène alimentaire et une sédentarité croissante. La découverte récente de l'existence d'un état inflammatoire chronique au cours de l'obésité pouvant intervenir dans la physiopathologie de la maladie et de ses nombreuses complications fait aujourd'hui l'objet d'intenses investigations. Or, le tissu adipeux (TA) qui, parallèlement à son activité métabolique, possède également une activité sécrétoire intense, est un acteur majeur de ce syndrome inflammatoire. L'autotaxine (ATX), l'adiponectine et la résistine sont les médiateurs de l'inflammation sécrétés par le TA. Si le rôle de ces facteurs dans la régulation du métabolisme est bien établi, leurs effets sur d'autres organes ne sont pas toujours connus. Il est notamment intéressant d'étudier leurs effets dans le système nerveux central (SNC), les récepteurs de certains y étant présent. Dans ce contexte, nous avons dans un premier temps étudié l'effet de l'ATX sur le stress oxydant généré par le H2O2 (peroxyde d'hydrogène) et sur l'inflammation induit par le lipopolysaccharide (LPS) ou le trimethylétain (TMT) dans les cellules microgliales murines, cellules immunitaires résidentes du SNC. Nos résultats montrent pour la première fois, l'effet anti-oxydant et anti-inflammatoire de l'ATX sur les cellules microgliales. Chez la souris, le TMT affecte la région hippocampique du SNC et nous avons montré qu'il induit la production d'ATX après 5 jours d'une injection i.p. de TMT. Ce qui suggère un rôle important de l'ATX dans la régulation de l'homéostasie des microglies et du SNC ainsi que dans la neuroinflammation. L'effet du TMT sur l'inflammation produite par le TA a également été étudié et les résultats montrent que le TMT induit une réponse inflammatoire dans deux types cellulaires du TA : adipocytes et macrophages ainsi que dans le TA de souris obèse ob/ob. Ensuite, nous avons sous-cloné les ADNc de l'adiponectine et de la résistine dans des vecteurs d'expression eucaryote afin d'étudier leurs effets sur les cellules microgliales dans des conditions normales ou inflammatoires. Cette étude devrait permettre une meilleure compréhension de l'influence du TA sur le SNC et donc la relation entre l'obésité les maladies neurodégénérative afin de proposer de nouvelles approches thérapeutiques. / In the last years, Obesity has been considered a major health issue with around 10% of the world population affected. The causes of this pandemy are multiple, but include bad alimentary habits and an increasing settle way of life. The recent discovery that chronic inflammation during obesity was associated with this disease physiopathology and others complications is the center of many investigations. Adipose tissue (AT), in addition to its metabolic activity, has an intense secretory activity and is a main player in this inflammatory syndrome. Autotaxin (ATX), adiponectin and resistin are such mediators secreted by AT. These factors functions in metabolism regulation are well described, but their effects on others organs are not always known. As it has been shown that some of these factors receptors are present in the central nervous system (CNS), it is interesting to study their effects in this organ. In this context, we initially studied the effect of ATX on the oxidative stress generated by H2O2 (hydrogen peroxide) and inflammation induced by lipopolysaccharide (LPS) or trimethyltin (TMT) in murine microglial cells, resident immune cells of the CNS. Our results show for the first time, the anti-oxidant and anti-inflammatory effects of ATX in microglial cells. In mice, TMT affects hippocampal region of CNS and we showed that ATX RNA is up regulated in the hippocampus 5 days post TMT treatment. Our results suggest that ATX could be involved in the regulation of microglia homeostasis and in neuroinflammation. The effect of TMT on the inflammation produced by the AT has also been studied and the results show that TMT induces an inflammatory response in two cell types of AT: adipocytes and macrophages and in fat tissue from ob/ob mice.We then subcloned the cDNA of adiponectin and resistin in eukaryotic expression vectors to study their effects on microglial cells under normal or inflammatory conditions. This study should lead to better understanding of adipose tissue influence on the CNS and therefore the relationship between obesity and neurodegenerative diseases to develop new therapeutic approaches.
9

Rôle de l’axe Autotaxine (ATX)- Acide Lysophosphatidique (LPA) et récepteur LPA1 dans la dissémination métastatique des cancers du sein / Involvement of the Autotaxin (ATX)-Lysophosphatidic acid (LPA)- LPA1 receptor axe in breast cancer metastatic dissemination

David, Marion 15 December 2010 (has links)
Les métastases sont des conséquences dramatiques lors de la progression des cancers. Malgré les traitements actuels la médiane de survie de patients atteints de métastases osseuses n’est que de 24 mois. Donc l’identification de nouvelles cibles thérapeutiques dans le traitement ou la prévention des métastases revêt un caractère crucial. L’objectif de ce travail de thèse est d’étudier le rôle de l’acide lysophosphatidique (LPA) et de l’autotaxine (ATX) dans la dissémination métastatique des cancers du sein. Notre laboratoire a montré que le LPA contrôle la croissance tumorale et la progression des métastases osseuses dans le contexte des cancers du sein. On sait depuis peu qu’en raison de son activité lysophospholipase D, ATX produit du LPA à partir de la lysophosphatidylcholine et contrôle les niveaux de LPA dans la circulation sanguine. ATX est une protéine sécrétée présentant des propriétés métastatiques. Les travaux présentés dans cette thèse montrent que l'expression d'ATX par les cellules tumorales contrôle les événements précoces de la dissémination métastatique des cancers du sein ainsi que le processus plus tardif de formation et de progression des métastases osseuses en agissant sur la fonction ostéoclastique. Il existe un grand nombre de récepteurs capables de transmettre l’activation cellulaire par le LPA (LPA1-6). Ce travail de thèse montre également que le niveau d’expression du récepteur LPA1 au niveau de la tumeur primaire est un facteur prédictif de la rechute métastatique chez les patientes ayant un cancer du sein. D’autre part dans un modèle animal préclinique, nous avons observé que le ciblage thérapeutique précoce de LPA1 par le DEBIO-0719 bloque efficacement la dissémination métastatique des cellules de cancer du sein. En conclusion, nos résultats montrent que le ciblage de l’axe ATX/LPA/LPA1 présente un haut potentiel thérapeutique chez des patientes atteintes d’un cancer du sein à fort risque métastatique / Metastases consist of poor disease progression for patients with cancers. Bone metastases are frequently found in multiple cancers. Despite the improvement of current therapies, the survival of bone metastasis patients is only 24 months. The aim of this work consisted in understanding the role of lysophosphatidic acid (LPA), autotaxin (ATX) and the LPA receptor LPA1 in the metastatic dissemination of breast cancers. Our laboratory showed previously that LPA produced tumor growth and the progression of osteolytic bone metastases of breast cancer cells. Due to its lysophospholipase D activity, ATX generates LPA from lysophosphatidylcholine and controls LPA levels in the blood. ATX is a secreted protein with metastatic properties. In the present thesis, we first demonstrated that ATX expressed by tumors cells controls early events of metastatic dissemination of breast cancer cells and latter bone metastases formation and progression by acting on osteoclastic function. There is a large number of receptors mediating the cellular activation of LPA (LPA1-6). This work showed additionally that the LPA1 expression level at the primary tumor site is predictive for the metastatic relapse of breast cancers. On the other hand, in a preclinical animal model, we observed that targeting LPA1 at early stage of tumor development with the DEBIO-0719 decreased efficiently the metastatic dissemination of breast cancer cells. Altogether, these results indicate that targeting the ATX/LPA/LPA1 track has a high therapeutic potential against metastasis formation for patients with breast cancer
10

The Role of Autotaxin in the Regulation of Lysophosphatidylcholine-Induced Cell Migration

Gaetano, Cristoforo Giuseppe 06 1900 (has links)
Increased expression of autotaxin has been shown to promote metastasis formation and cancer proliferation. These actions could be related to the catalytic activity of autotaxin which converts lysophosphatidylcholine into lysophosphatidate extracellularly or non-catalytic functions of autotaxin may be responsible. Also both LPC and LPA have been reported to stimulate migration through their respective receptors. This work investigates the role of autotaxin in controlling the motility of two cancer cell lines. With the use of autotaxin inhibitors we were able to block LPC-induced migration. Knocking-down autotaxin secretion also blocked stimulation of migration by LPC. Autotaxin inhibitors abolished any migratory effects from media collected from autotaxin secreting cells. We determined that LPC alone is unable to stimulate migration. Also we did not observe non-catalytic effects of autotaxin on migration. This thesis provides strong evidence that the inhibition of autotaxin production or activity would provide a beneficial therapy in the prevention of tumour growth or metastasis in patients with autotaxin expressing tumours.

Page generated in 0.0403 seconds