• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 3
  • Tagged with
  • 13
  • 10
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Synthèse de prodrogues de l’[aza(p-MeO)F⁴]-GHRP-6, α-acyloxyéthyl carbamates, pour réguler le récepteur CD36

N'guessan, Ginette 09 1900 (has links)
Les prodrogues sont des dérivés biologiquement inactifs d’un principe actif qui, après administration à un organisme, subissent une transformation chimique ou enzymatique pour libérer le principe actif au site d’action. Elles améliorent les propriétés physicochimiques du principe actif pour permettre un meilleur transport à travers les barrières biologiques et pour augmenter l’activité in vivo. Elles sont utilisées pour améliorer la formulation et l’administration, accroître la perméabilité et l’absorption, modifier le profil de distribution et éviter le métabolisme et la toxicité. Cette approche est très utile pour améliorer l'administration de principes actifs. Il existe deux types de prodrogues : les prodrogues liées à un transporteur et les bioprécurseurs. Dans le premier cas, la molécule active est liée par une liaison covalente à un groupement temporaire, ce qui fournit une nouvelle molécule, qui est inactive. Le groupement temporaire libéré ne doit pas avoir, par lui-même, d'action pharmacologique ni de toxicité. Dans le second cas, le principe actif est transformé métaboliquement ou chimiquement par réaction d’hydratation, d’oxydation ou de réduction. Les azapeptides sont des mimes peptidiques dans lesquels un ou plusieurs carbones de la chaîne peptidique sont remplacés par des atomes d’azote. Ce remplacement augmente la rigidité de la chaîne peptidique et favorise le repliement de type β. Le repliement β des azapeptides est associé à plusieurs propriétés thérapeutiques. Certains azapeptides ont montré une meilleure activité, une meilleure sélectivité et une plus grande stabilité comparativement aux peptides parents ce qui prolonge leur durée d'action et les rend plus résistants aux dégradations métaboliques. Ce mémoire s’intéresse particulièrement à l’azapeptide : [aza(p-MeO)F⁴]-GHRP-6. Celui-ci est un analogue du peptide sécréteur d’hormone de croissance 6 (GHRP-6, H-His-D-Trp-Ala-Trp-D-Phe-Lys-NH₂), qui possède une affinité pour deux récepteurs distincts : les récepteurs de growth hormone secretagogue receptor 1a (GHS-R1a) et le récepteur cluster of differentiation 36 (CD36). L’[aza(p-MeO)F⁴]-GHRP-6 démontre une sélectivité envers le récepteur CD36 offrant des possibilités de traitement de maladies telles que l’athérosclérose et la dégénérescence maculaire liée à l’âge (DMLA). De plus, le récepteur CD36 peut interagir avec un corécepteur toll-like receptor 2 (TLR2), et l’[aza(p-MeO)F⁴]-GHRP-6 peut réduire des réponses immunitaires innées. La stratégie des prodrogues a été utilisée dans ce mémoire pour augmenter la durée d’action de l’azapeptide [aza(p-MeO)F⁴]-GHRP-6. Plus précisément, cinq analogues des prodrogues α-acyloxyéthylcarbamates de l’aza(p-MeO)F⁴-GHRP-6 ont été synthétisées. Ce mémoire présente la première synthèse de prodrogues α-acyloxyéthylcarbamates à caractère PEG de l’[aza(p-MeO)F⁴]-GHRP-6. / A prodrug is a biologically inactive derivative of a drug which after administration undergoes chemical or enzymatic modification to release the active drug at targeted sites of activity. Prodrugs improve physicochemical properties to enable better transport through biological barriers and enhance activity. They are used to improve formulation and administration, to enhance permeability and absorption, to modify distribution profiles and to avoid metabolism and toxicity. The prodrug approach is useful for improving drug delivery. Prodrugs are classified into two types: carrier-linked prodrugs and bio-precursors. In the first case, the parent drug is linked by a covalent bond to an inert carrier or transport moiety. The carrier should not be active or toxic. The active drug is released by a chemical or enzymatic cleavage in vivo. In the second case, the parent drug is converted metabolically or chemically by hydration, oxidation or reduction reactions. Azapeptides employ a semicarbazide as an amino amide surrogate in a peptide analog in which the backbone α-CH is replaced by nitrogen. Through electronic interactions, the semicarbazide favors backbone β-turn geometry due to a combination of urea planarity and hydrazine nitrogen lone pair – lone pair repulsion. Azapeptides have proven therapeutic utility. Some of them exhibit better selectivity, activity and stability than the parent peptides with increased duration of action and improved metabolic stability. Growth hormone releasing peptide-6 (GHRP-6, H-His-D-Trp-Ala-Trp-D-Phe-Lys-NH₂) is a synthetic peptide possessing an affinity for two different receptors: growth hormone secretagogue receptor 1a (GHS-R1a) and cluster of differentiation receptor 36 (CD36). The GHRP-6 azapeptide analogue, [aza(p-MeO)F⁴]-GHRP-6, has exhibited good affinity for CD36 and reduced nitric oxide overproduction in macrophage cells stimulated with the TLR-2 agonist R-FSL-1. Azapeptide ligands of CD36, such as [aza(p-MeO)F⁴]-GHRP-6, offers potential as prototypes for developing treatments of diseases such as atherosclerosis and age-related macular degeneration. A prodrug strategy has been pursued to improve the pharmacokinetic properties, such as duration of action, of [aza(p-MeO)F⁴]-GHRP-6. The first examples of α-acyloxyethyl carbamate peptides have been prepared. Five α-acyloxyethyl carbamate analogues of [aza(p-MeO)F⁴]-GHRP-6 have been synthesized by routes featuring acylation of the resin-bound peptide using different activated α-acyloxyethyl carbonates prior to resin cleavage and side chain deprotection. The evaluation of the activity of the pharmacokinetic properties of the [aza(p-MeO)F⁴]-GHRP-6 prodrugs is currently in progress and will be reported in due time.
12

Méthodologie pour la synthèse combinatoire d’azapeptides: application à la synthèse d’analogues aza-GHRP-6 en tant que ligands du récepteur CD36

Proulx, Caroline 07 1900 (has links)
Les azapeptides sont des mimes peptidiques où le carbone alpha d’un ou de plusieurs acides aminés est remplacé par un atome d’azote. Cette modification tend à stabiliser une conformation en repliement beta en raison de la répulsion électronique entre les paires d’électrons libres des atomes d’azote adjacents et de la géométrie plane de l’urée. De plus, le résidu semicarbazide a une meilleure résistance face aux protéases en plus d’être chimiquement plus stable qu’une liaison amide. Bien que les propriétés des azapeptides en fassent des mimes peptidiques intéressants, leurs méthodes de synthèses font appel à la synthèse laborieuse d’hydrazines substituées en solution. Le peptide sécréteur d’hormone de croissance 6 (GHRP-6, His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) est un hexapeptide synthétique qui possède une affinité pour deux récepteurs distincts: les récepteurs GHS-R1a et CD36. Les travaux effectués au cours de mon doctorat qui seront détaillés dans cet ouvrage visent à atteindre deux objectifs: (1) le développement d’analogues du peptide GHRP-6 sélectif à un seul récepteur et (2) la mise au point d’une nouvelle méthodologie pour la synthèse combinatoire d’azapeptides. En réponse au premier objectif, la synthèse parallèle de 49 analogues aza-GHRP-6 a été effectuée et certains candidats sélectifs au récepteur CD36 ont été identifiés. L’étude de leurs propriétés anti-angiogéniques, effectuée par nos collaborateurs, a également permis d’identifier des candidats intéressants pour le traitement potentiel de la dégénérescence maculaire liée à l’âge. Une nouvelle approche pour la synthèse combinatoire d’azapeptides, faisant appel à l’alkylation et la déprotection chimiosélective d’une sous-unité semicarbazone ancrée sur support solide, a ensuite été développée. La portée de cette méthodologie a été augmentée par la découverte de conditions permettant l’arylation régiosélective de cette sous-unité semicarbazone, donnant accès à treize nouveaux dérivés aza-GHRP-6 possédant des résidus aza-arylglycines aux positions D-Trp2 et Trp4. L’élaboration de conditions propices à l’alkylation et la déprotection chimiosélective de la semicarbazone a donné accès à une variété de chaînes latérales sur l’acide aminé « aza » préalablement inaccessibles. Nous avons, entre autres, démontré qu’une chaîne latérale propargyl pouvait être incorporée sur l’acide aminé « aza ». Tenant compte de la réactivité des alcynes, nous avons ensuite élaboré des conditions réactionnelles permettant la formation in situ d’azotures aromatiques, suivie d’une réaction de cycloaddition 1,3-dipolaire sur support solide, dans le but d’obtenir des mimes de tryptophane. Sept analogues du GHRP-6 ont été synthétisés et testés pour affinité au récepteur CD36 par nos collaborateurs. De plus, nous avons effectué une réaction de couplage en solution entre un dipeptide possédant un résidu aza-propargylglycine, du paraformaldehyde et une variété d’amines secondaires (couplage A3) afin d’accéder à des mimes rigides d’aza-lysine. Ces sous-unités ont ensuite été incorporées sur support solide afin de générer sept nouveaux azapeptides avec des dérivés aza-lysine à la position Trp4 du GHRP-6. Enfin, une réaction de cyclisation 5-exo-dig a été développée pour la synthèse de N-amino imidazolin-2-ones en tant que nouveaux mimes peptidiques. Leur fonctionnalisation par une série de groupements benzyliques à la position 4 de l’hétérocycle a été rendue possible grâce à un couplage Sonogashira précédant la réaction de cyclisation. Les propriétés conformationnelles de cette nouvelle famille de composés ont été étudiées par cristallographie aux rayons X et spectroscopie RMN d’un tétrapeptide modèle. L’activité biologique de deux mimes peptidiques, possédant un résidu N-amino-4-méthyl- et 4-benzyl-imidazolin-2-one à la position Trp4 du GHRP-6, a aussi été examinée. L’ensemble de ces travaux devrait contribuer à l’avancement des connaissances au niveau des facteurs structurels et conformationnels requis pour le développement d’azapeptides en tant que ligands du récepteur CD36. De plus, les résultats obtenus devraient encourager davantage l’utilisation d’azapeptides comme peptidomimétiques grâce à leur nouvelle facilité de synthèse et la diversité grandissante au niveau de la chaîne latérale des acides aminés « aza ». / Azapeptides are peptide mimics in which the CH alpha in one or more amino acids has been replaced with a nitirogen atom. Such a modification tends to induce beta turn conformations in peptides, because of the consequences of lone–pair lone–pair repulsion between the two adjacent nitrogens and the planar geometry of the urea in the semicarbazide moiety. Furthermore, the semicarbazide increases protease resistance and is chemically more stable than its amide counterpart. Despite the potential advantages of using azapeptides mimics, their synthesis has been hampered by the solution-phase construction of substituted hydrazines prior to their incorporation into peptide sequences. Growth Hormone Releasing Peptide 6 sequence (GHRP-6, His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) is a synthetic hexapeptide that binds to two distinct receptor: the Growth Hormone Secretatgogue Receptor 1a (GHS-R1a) and the Cluster of Differentiation 36 (CD36) receptor. The body of my Ph.D thesis has been generally targeted towards two objectives: (a) the development of azapeptide analogs of GHRP-6 with enhanced receptor selectivity and (b) the elaboration of a new synthetic approach for combinatorial submonomer azapeptide synthesis. In response to the first objective, 49 aza-GHRP-6 derivatives were synthesized and evaluated for receptor binding and biological activity. From this library, certain candidates were identified which exhibited decreased affinity for the GHS-R1a receptor with maintained affinity for the CD36 receptor. Furthermore, in studying their anti-angiogenic properties, our collaborators have identified aza-GHRP-6 analogs, which caused a marked decrease in microvascular sprouting in choroid explants, as well as another displaying potential to increase angiogenesis. A new approach for the combinatorial synthesis of azapeptides was developed to better conduct SAR studies using azapeptides. This method features the chemoselective alkylation and deprotection of a resin-bound semicarbazone building block. The scope of the methodology was further expanded by the development of reaction conditions for the chemoselective N-arylation of this semicarbazone residue, yielding 13 aza-GHRP-6 derivatives with aza-arylglycines residues at the D-Trp2 and Trp4 positions. The elaboration of a methodology based on the chemoselective alkylation and deprotection of a semicarbazone has allowed for greater aza-amino acid side chain diversity, enabling for example, the efficient incorporation of aza-propargylglycine residues into peptide sequences. Considering the reactivity of alkynes, we developed reaction conditions for in situ formation of aromatic azides, followed by a 1,3-dipolar cycloaddition reaction on solid support to yield aza-1-aryl,2,3-triazole-3-alanine residues as tryptophan mimics. Seven aza-GHRP-6 analogs were synthesized and subsequently tested for binding to the CD36 receptor by our collaborators. Moreover, the coupling reaction between an aza-propargylglycine-containing dipeptide building block, paraformaldehyde and a variety of secondary amines (A3 coupling) was accomplished in solution to provide access to rigid aza-lysine mimics. These aza-dipeptides were subsequently incorporated at the Trp4 position of seven new aza-GHRP-6 analogues using a solid-phase protocol, and the resulting azaLys mimics were tested for binding towards the CD36 receptor. Finally, conditions for a 5-exo-dig cyclization of an aza-propargylglycine residue were developed to give N-amino imidazolin-2-ones as turn-inducing peptide mimics. Their modification at the 4 position was achieved using a Sonogashira coupling protocol prior to the cyclization step. The conformational properties of these new heterocyclic motifs were assessed by X-ray crystallography and NMR spectroscopy on a tetrapeptide model system. The incorporation of N-amino-4-methyl- and 4-benzyl-imidazolin-2-ones at the Trp4 position of GHRP-6 was further accomplished and the biological evaluation of the peptidomimetics was examined. Taken together, these results should lead to a better understanding of the structural and conformational factors responsible for binding and biological activity of azapeptide ligands of the CD36 receptor. Furthermore, the submonomer approach for azapeptide synthesis developed should promote the use of azapeptides as peptide mimics, given its accessibility and the increased aza-amino acid side-chain diversity available.
13

Méthodologie pour la synthèse combinatoire d’azapeptides: application à la synthèse d’analogues aza-GHRP-6 en tant que ligands du récepteur CD36

Proulx, Caroline 07 1900 (has links)
Les azapeptides sont des mimes peptidiques où le carbone alpha d’un ou de plusieurs acides aminés est remplacé par un atome d’azote. Cette modification tend à stabiliser une conformation en repliement beta en raison de la répulsion électronique entre les paires d’électrons libres des atomes d’azote adjacents et de la géométrie plane de l’urée. De plus, le résidu semicarbazide a une meilleure résistance face aux protéases en plus d’être chimiquement plus stable qu’une liaison amide. Bien que les propriétés des azapeptides en fassent des mimes peptidiques intéressants, leurs méthodes de synthèses font appel à la synthèse laborieuse d’hydrazines substituées en solution. Le peptide sécréteur d’hormone de croissance 6 (GHRP-6, His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) est un hexapeptide synthétique qui possède une affinité pour deux récepteurs distincts: les récepteurs GHS-R1a et CD36. Les travaux effectués au cours de mon doctorat qui seront détaillés dans cet ouvrage visent à atteindre deux objectifs: (1) le développement d’analogues du peptide GHRP-6 sélectif à un seul récepteur et (2) la mise au point d’une nouvelle méthodologie pour la synthèse combinatoire d’azapeptides. En réponse au premier objectif, la synthèse parallèle de 49 analogues aza-GHRP-6 a été effectuée et certains candidats sélectifs au récepteur CD36 ont été identifiés. L’étude de leurs propriétés anti-angiogéniques, effectuée par nos collaborateurs, a également permis d’identifier des candidats intéressants pour le traitement potentiel de la dégénérescence maculaire liée à l’âge. Une nouvelle approche pour la synthèse combinatoire d’azapeptides, faisant appel à l’alkylation et la déprotection chimiosélective d’une sous-unité semicarbazone ancrée sur support solide, a ensuite été développée. La portée de cette méthodologie a été augmentée par la découverte de conditions permettant l’arylation régiosélective de cette sous-unité semicarbazone, donnant accès à treize nouveaux dérivés aza-GHRP-6 possédant des résidus aza-arylglycines aux positions D-Trp2 et Trp4. L’élaboration de conditions propices à l’alkylation et la déprotection chimiosélective de la semicarbazone a donné accès à une variété de chaînes latérales sur l’acide aminé « aza » préalablement inaccessibles. Nous avons, entre autres, démontré qu’une chaîne latérale propargyl pouvait être incorporée sur l’acide aminé « aza ». Tenant compte de la réactivité des alcynes, nous avons ensuite élaboré des conditions réactionnelles permettant la formation in situ d’azotures aromatiques, suivie d’une réaction de cycloaddition 1,3-dipolaire sur support solide, dans le but d’obtenir des mimes de tryptophane. Sept analogues du GHRP-6 ont été synthétisés et testés pour affinité au récepteur CD36 par nos collaborateurs. De plus, nous avons effectué une réaction de couplage en solution entre un dipeptide possédant un résidu aza-propargylglycine, du paraformaldehyde et une variété d’amines secondaires (couplage A3) afin d’accéder à des mimes rigides d’aza-lysine. Ces sous-unités ont ensuite été incorporées sur support solide afin de générer sept nouveaux azapeptides avec des dérivés aza-lysine à la position Trp4 du GHRP-6. Enfin, une réaction de cyclisation 5-exo-dig a été développée pour la synthèse de N-amino imidazolin-2-ones en tant que nouveaux mimes peptidiques. Leur fonctionnalisation par une série de groupements benzyliques à la position 4 de l’hétérocycle a été rendue possible grâce à un couplage Sonogashira précédant la réaction de cyclisation. Les propriétés conformationnelles de cette nouvelle famille de composés ont été étudiées par cristallographie aux rayons X et spectroscopie RMN d’un tétrapeptide modèle. L’activité biologique de deux mimes peptidiques, possédant un résidu N-amino-4-méthyl- et 4-benzyl-imidazolin-2-one à la position Trp4 du GHRP-6, a aussi été examinée. L’ensemble de ces travaux devrait contribuer à l’avancement des connaissances au niveau des facteurs structurels et conformationnels requis pour le développement d’azapeptides en tant que ligands du récepteur CD36. De plus, les résultats obtenus devraient encourager davantage l’utilisation d’azapeptides comme peptidomimétiques grâce à leur nouvelle facilité de synthèse et la diversité grandissante au niveau de la chaîne latérale des acides aminés « aza ». / Azapeptides are peptide mimics in which the CH alpha in one or more amino acids has been replaced with a nitirogen atom. Such a modification tends to induce beta turn conformations in peptides, because of the consequences of lone–pair lone–pair repulsion between the two adjacent nitrogens and the planar geometry of the urea in the semicarbazide moiety. Furthermore, the semicarbazide increases protease resistance and is chemically more stable than its amide counterpart. Despite the potential advantages of using azapeptides mimics, their synthesis has been hampered by the solution-phase construction of substituted hydrazines prior to their incorporation into peptide sequences. Growth Hormone Releasing Peptide 6 sequence (GHRP-6, His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) is a synthetic hexapeptide that binds to two distinct receptor: the Growth Hormone Secretatgogue Receptor 1a (GHS-R1a) and the Cluster of Differentiation 36 (CD36) receptor. The body of my Ph.D thesis has been generally targeted towards two objectives: (a) the development of azapeptide analogs of GHRP-6 with enhanced receptor selectivity and (b) the elaboration of a new synthetic approach for combinatorial submonomer azapeptide synthesis. In response to the first objective, 49 aza-GHRP-6 derivatives were synthesized and evaluated for receptor binding and biological activity. From this library, certain candidates were identified which exhibited decreased affinity for the GHS-R1a receptor with maintained affinity for the CD36 receptor. Furthermore, in studying their anti-angiogenic properties, our collaborators have identified aza-GHRP-6 analogs, which caused a marked decrease in microvascular sprouting in choroid explants, as well as another displaying potential to increase angiogenesis. A new approach for the combinatorial synthesis of azapeptides was developed to better conduct SAR studies using azapeptides. This method features the chemoselective alkylation and deprotection of a resin-bound semicarbazone building block. The scope of the methodology was further expanded by the development of reaction conditions for the chemoselective N-arylation of this semicarbazone residue, yielding 13 aza-GHRP-6 derivatives with aza-arylglycines residues at the D-Trp2 and Trp4 positions. The elaboration of a methodology based on the chemoselective alkylation and deprotection of a semicarbazone has allowed for greater aza-amino acid side chain diversity, enabling for example, the efficient incorporation of aza-propargylglycine residues into peptide sequences. Considering the reactivity of alkynes, we developed reaction conditions for in situ formation of aromatic azides, followed by a 1,3-dipolar cycloaddition reaction on solid support to yield aza-1-aryl,2,3-triazole-3-alanine residues as tryptophan mimics. Seven aza-GHRP-6 analogs were synthesized and subsequently tested for binding to the CD36 receptor by our collaborators. Moreover, the coupling reaction between an aza-propargylglycine-containing dipeptide building block, paraformaldehyde and a variety of secondary amines (A3 coupling) was accomplished in solution to provide access to rigid aza-lysine mimics. These aza-dipeptides were subsequently incorporated at the Trp4 position of seven new aza-GHRP-6 analogues using a solid-phase protocol, and the resulting azaLys mimics were tested for binding towards the CD36 receptor. Finally, conditions for a 5-exo-dig cyclization of an aza-propargylglycine residue were developed to give N-amino imidazolin-2-ones as turn-inducing peptide mimics. Their modification at the 4 position was achieved using a Sonogashira coupling protocol prior to the cyclization step. The conformational properties of these new heterocyclic motifs were assessed by X-ray crystallography and NMR spectroscopy on a tetrapeptide model system. The incorporation of N-amino-4-methyl- and 4-benzyl-imidazolin-2-ones at the Trp4 position of GHRP-6 was further accomplished and the biological evaluation of the peptidomimetics was examined. Taken together, these results should lead to a better understanding of the structural and conformational factors responsible for binding and biological activity of azapeptide ligands of the CD36 receptor. Furthermore, the submonomer approach for azapeptide synthesis developed should promote the use of azapeptides as peptide mimics, given its accessibility and the increased aza-amino acid side-chain diversity available.

Page generated in 0.0363 seconds