• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Machine Learning – Based Dynamic Response Prediction of High – Speed Railway Bridges

Xu, Jin January 2020 (has links)
Targeting heavier freights and transporting passengers with higher speeds became the strategic railway development during the past decades significantly increasing interests on railway networks. Among different components of a railway network, bridges constitute a major portion imposing considerable construction and maintenance costs. On the other hand, heavier axle loads and higher trains speeds may cause resonance occurrence on bridges; which consequently limits operational train speed and lines. Therefore, satisfaction of new expectations requires conducting a large number of dynamic assessments/analyses on bridges, especially on existing ones. Evidently, such assessments need detailed information, expert engineers and consuming considerable computational costs. In order to save the computational efforts and decreasing required amount of expertise in preliminary evaluation of dynamic responses, predictive models using artificial neural network (ANN) are proposed in this study. In this regard, a previously developed closed-form solution method (based on solving a series of moving force) was adopted to calculate the dynamic responses (maximum deck deflection and maximum vertical deck acceleration) of randomly generated bridges. Basic variables in generation of random bridges were extracted both from literature and geometrical properties of existing bridges in Sweden. Different ANN architectures including number of inputs and neurons were considered to train the most accurate and computationally cost-effective mode. Then, the most efficient model was selected by comparing their performance using absolute error (ERR), Root Mean Square Error (RMSE) and coefficient of determination (R2). The obtained results revealed that the ANN model can acceptably predict the dynamic responses. The proposed model presents Err of about 11.1% and 9.9% for prediction of maximum acceleration and maximum deflection, respectively. Furthermore, its R2 for maximum acceleration and maximum deflection predictions equal to 0.982 and 0.998, respectively. And its RMSE is 0.309 and 1.51E-04 for predicting the maximum acceleration and maximum deflection prediction, respectively. Finally, sensitivity analyses were conducted to evaluate the importance of each input variable on the outcomes. It was noted that the span length of the bridge and speed of the train are the most influential parameters.
2

倒傳導神經網路的有效性、使用性與顯著性之研究 / The Study of Validity, Utilization and Salience of the BP Networks

陳怡達, Chen, Yi-Da Unknown Date (has links)
本研究的主要目的是檢視倒傳導神經網路是否具有人類在分類學習上所呈現出來的學習效應 — 競爭學習、遮蔽效應與不相關線索的影響。在實驗中,我們採用兩種倒傳導神經網路,來測試激發函數是否會影響倒傳導神經網路的學習。此兩種倒傳導神經網路分別採用sigmoid激發函數與hyperbolic-tangent激發函數。實驗結果顯示,以sigmoid為激發函數與以hyperbolic-tangent為激發函數的倒傳導神經網路都具有這三個學習效應。還有,以sigmoid為激發函數的倒傳導神經網路所呈現出來的學習效應比以hyperbolic-tangent為激發函數的倒傳導神經網路來得顯著。本研究的次要目的在於瞭解有效性(使用性)與敏感度分析的數值是否有對應關係。實驗結果顯示,線索A與線索B的敏感度分析數值差異可以反映出線索A與線索B的有效性差異。然而,敏感度分析數值卻無法準確地顯示線索的有效性數值。 / The main objective of this research is to examine whether back propagation neural networks (BP) have the learning effects found in human category learning — competitive learning, overshadowing and the deleterious of an irrelevant cue. Two kinds of BP, BP with sigmoid activation function and BP with hyperbolic-tangent activation function, are investigated to see if the activation function will make BP behave differently. According to the results of our experiments, these three learning effects are demonstrated both in BP with sigmoid and BP with hyperbolic-tangent, but they seems more significant in BP with sigmoid than in BP with hyperbolic-tangent. The second objective of our research is to see if there is a correspondence between the validity (the utilization) and the value of sensitivity analysis, R. From the results of our experiments, we observe that the difference between values of sensitivity analysis with respect to Cue A and Cue B reflects the difference of the validities between Cue A and Cue B. However, the value of sensitivity analysis does not show exactly what validity a cue is.

Page generated in 0.1234 seconds