• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Augmentation de la production d'hydrogène par l'expression hétérologue d'hydrogénase et la production d’hydrogène à partir de résidus organiques

Sabourin, Guillaume P. 11 1900 (has links)
La recherche de sources d’énergie fiables ayant un faible coût environnemental est en plein essor. L’hydrogène, étant un transporteur d’énergie propre et simple, pourrait servir comme moyen de transport de l’énergie de l’avenir. Une solution idéale pour les besoins énergétiques implique une production renouvelable de l’hydrogène. Parmi les possibilités pour un tel processus, la production biologique de l’hydrogène, aussi appelée biohydrogène, est une excellente alternative. L’hydrogène est le produit de plusieurs voies métaboliques bactériennes mais le rendement de la conversion de substrat en hydrogène est généralement faible, empêchant ainsi le développement d’un processus pratique de production d’hydrogène. Par exemple, lorsque l’hydrogène est produit par la nitrogénase sous des conditions de photofermentation, chaque molécule d’hydrogène constituée requiert 4 ATP, ce qui rend le processus inefficace. Les bactéries photosynthétiques non sulfureuses ont la capacité de croître sous différentes conditions. Selon des études génomiques, Rhodospirillum rubrum et Rhodopseudomonas palustris possèdent une hydrogénase FeFe qui leur permettrait de produire de l’hydrogène par fermentation anaérobie de manière très efficace. Il existe cependant très peu d’information sur la régulation de la synthèse de cette hydrogénase ainsi que sur les voies de fermentation dont elle fait partie. Une surexpression de cette enzyme permettrait potentiellement d’améliorer le rendement de production d’hydrogène. Cette étude vise à en apprendre davantage sur cette enzyme en tentant la surexpression de cette dernière dans les conditions favorisant la production d’hydrogène. L’utilisation de résidus organiques comme substrat pour la production d’hydrogène sera aussi étudiée. / The search for alternative energy sources with low environmental impact is in great expansion. Hydrogen, an elegant and simple energy transporter, could serve as means of transporting energy in the future. An ideal solution to the increasing energy needs would imply a renewable production of hydrogen. Out of all the existing possibilities for such a process, the biological production of hydrogen, also called biohydrogen, is an excellent alternative. Hydrogen is the end result or co-product of many pathways in bacterial metabolism. However, such pathways usually show low yields of substrate to hydrogen conversion, which prevents the development of efficient production processes. For example, when hydrogen is produced via nitrogenase under photofermentation conditions, each hydrogen molecule produced requires 4 molecules of ATP, rendering the process very energetically inefficient. Purple non-sulfur bacteria are highly adaptive organisms that can grow under various conditions. According to recent genomic analyses, Rhodospirillum rubrum and Rhodopseudomonas palustris possess, within their genome, an FeFe hydrogenase that would allow them to produce hydrogen via dark fermentation quite efficiently. Unfortunately, very little information is known on the regulation of the synthesis of this enzyme or the various pathways that require it. An overexpression of this hydrogenase could potentially increase the yields of substrate to hydrogen conversion. This study aims to increase our knowledge about this FeFe hydrogenase by overexpressing it in conditions that facilitate the production of hydrogen. The use of organic waste as substrate for hydrogen production will also be studied.
2

Influence de la température sur la structure et la dynamique des protéines collectrices de lumière des bactéries pourpres dans leur environnement natif

Seguin, Jérôme 13 June 2008 (has links) (PDF)
Ce travail concerne l'influence de la température sur la structure et la dynamique des protéines collectrices de lumière des bactéries pourpres dans leur environnement natif, les membranes intracytoplasmiques.<br />Pour mener à bien ces études, nous avons développé au laboratoire une approche de “calorimétrie fonctionnelle” dans les membranes intracytoplasmiques par des techniques de spectroscopie d'absorption, de dichroïsme circulaire et de Raman de résonance. Nous avons analysé l'effet de la température sur les propriétés spectrales de la protéine LH1 en utilisant les molécules de bactériochlorophylles comme marqueur naturel de l'assemblage des polypeptides transmembranaires, constituant l'anneau de LH1. Il existe dans la littérature de nombreuses études sur les processus d'auto-assemblage de ces protéines antennes, mais toutes réalisées après solubilisation en présence de détergent. C'est pourquoi nos études ont été réalisées sans ajout de détergent ou autres agents chaotrophes, mais directement sur les membranes intracytoplasmiques contenant la protéine LH1 surexprimée naturellement, dans le but de comparer les chemins de dissociation-réassociation de ces protéines selon qu'elles sont extraites ou non de leur milieu natif.<br />Nous avons montré que la variation de température autour de valeurs proches des conditions physiologiques révèle la dynamique de la structure des protéines LH1 et LH2. Ces résultats mettent en évidence l'existence d'un équilibre entre deux formes spectrales démontrant une flexibilité conformationnelle des protéines antennes dans leur environnement natif. <br /> A des températures élevées, nous montrons qu'il est possible de dissocier de manière réversible la protéine LH1, mais que le processus de dissociation et réassociation de la protéine suit un chemin différent de celui observé à partir de la protéine solubilisée.<br /> Ces études montrent l'importance des interactions entre bactériochlorophylles pour l'oligomérisation et le fonctionnement des protéines antennes dans leur “milieu naturel”
3

Augmentation de la production d'hydrogène par l'expression hétérologue d'hydrogénase et la production d’hydrogène à partir de résidus organiques

Sabourin, Guillaume P. 11 1900 (has links)
La recherche de sources d’énergie fiables ayant un faible coût environnemental est en plein essor. L’hydrogène, étant un transporteur d’énergie propre et simple, pourrait servir comme moyen de transport de l’énergie de l’avenir. Une solution idéale pour les besoins énergétiques implique une production renouvelable de l’hydrogène. Parmi les possibilités pour un tel processus, la production biologique de l’hydrogène, aussi appelée biohydrogène, est une excellente alternative. L’hydrogène est le produit de plusieurs voies métaboliques bactériennes mais le rendement de la conversion de substrat en hydrogène est généralement faible, empêchant ainsi le développement d’un processus pratique de production d’hydrogène. Par exemple, lorsque l’hydrogène est produit par la nitrogénase sous des conditions de photofermentation, chaque molécule d’hydrogène constituée requiert 4 ATP, ce qui rend le processus inefficace. Les bactéries photosynthétiques non sulfureuses ont la capacité de croître sous différentes conditions. Selon des études génomiques, Rhodospirillum rubrum et Rhodopseudomonas palustris possèdent une hydrogénase FeFe qui leur permettrait de produire de l’hydrogène par fermentation anaérobie de manière très efficace. Il existe cependant très peu d’information sur la régulation de la synthèse de cette hydrogénase ainsi que sur les voies de fermentation dont elle fait partie. Une surexpression de cette enzyme permettrait potentiellement d’améliorer le rendement de production d’hydrogène. Cette étude vise à en apprendre davantage sur cette enzyme en tentant la surexpression de cette dernière dans les conditions favorisant la production d’hydrogène. L’utilisation de résidus organiques comme substrat pour la production d’hydrogène sera aussi étudiée. / The search for alternative energy sources with low environmental impact is in great expansion. Hydrogen, an elegant and simple energy transporter, could serve as means of transporting energy in the future. An ideal solution to the increasing energy needs would imply a renewable production of hydrogen. Out of all the existing possibilities for such a process, the biological production of hydrogen, also called biohydrogen, is an excellent alternative. Hydrogen is the end result or co-product of many pathways in bacterial metabolism. However, such pathways usually show low yields of substrate to hydrogen conversion, which prevents the development of efficient production processes. For example, when hydrogen is produced via nitrogenase under photofermentation conditions, each hydrogen molecule produced requires 4 molecules of ATP, rendering the process very energetically inefficient. Purple non-sulfur bacteria are highly adaptive organisms that can grow under various conditions. According to recent genomic analyses, Rhodospirillum rubrum and Rhodopseudomonas palustris possess, within their genome, an FeFe hydrogenase that would allow them to produce hydrogen via dark fermentation quite efficiently. Unfortunately, very little information is known on the regulation of the synthesis of this enzyme or the various pathways that require it. An overexpression of this hydrogenase could potentially increase the yields of substrate to hydrogen conversion. This study aims to increase our knowledge about this FeFe hydrogenase by overexpressing it in conditions that facilitate the production of hydrogen. The use of organic waste as substrate for hydrogen production will also be studied.

Page generated in 0.0674 seconds