• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 167
  • 53
  • 19
  • 12
  • 9
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 334
  • 49
  • 47
  • 43
  • 40
  • 39
  • 36
  • 28
  • 26
  • 26
  • 26
  • 24
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Elementos genéticos móveis no microbioma dos sedimentos de manguezais / Mobile genetic elements in mangrove sediments microbiome

Filipe Rafael Salvetti Nunes 18 July 2016 (has links)
Os manguezais são ecossistemas costeiros de transição formados entre o ambiente marinho e terrestre de zonas tropicais e intertropicais, e estão sujeitos ao regime de marés. Devido a tais condições, os microrganismos que vivem nos sedimentos sofrem constante pressão adaptativa. Nesse contexto, os Elementos Genéticos Móveis (EGMs) (fagos, plasmídeos e transposons) são fatores genéticos diretamente relacionados com a transferência horizontal de genes e podem facilitar processos de adaptação. Neste trabalho foram estudados os EGMs dos sedimentos de três áreas de manguezais do estado de São Paulo, duas localizadas no município de Bertioga e uma na reserva ambiental da Ilha do Cardoso, em Cananeia. Foram avaliadas a frequência e expressão dos diferentes tipos de EGMs no microbioma dos manguezais a partir de metagenomas e metatranscriptomas dos sedimentos, além da utilização de uma biblioteca de fosmídeos, montada a partir de DNA do sedimento de uma das áreas de Bertioga. As sequências de DNA e mRNA foram obtidas de três pontos amostrados por área, sequenciadas em equipamento Illumina HiSeq2000 e anotadas automaticamente na plataforma do MG-RAST. Para a biblioteca de fosmídeo, foi sequenciado um pool de todos os clones em equipamento Illumina HiSeq 2000. Contigs dessas sequências foram montados e fagos e profagos foram preditos e anotados automaticamente pelo pipeline VirSorter. As sequências preditas como fagos ou profagos foram anotadas manualmente. A partir da análise das sequências de metagenômica foi possível verificar que a participação dos EGMs no metabolismo total do microbioma dos manguezais corresponde de 6 a 15 % dos genes preditos, sendo que fagos e profagos correspondem a 90% dos genes associados aos EGMs. A partir dos contigs montados para as sequências da biblioteca, foram preditos e anotados automaticamente 27 fagos, dos quais nove fagos foram anotados manualmente em etapa posterior. Foram encontrados genes que codificam proteínas típicas de fagos, como capsídeo, transposase e integrase, além de genes acessórios potencialmente importantes, como relacionados ao sistema de transporte ABC e sistema de transporte tipo II. A partir da anotação manual, genes conservados de fagos foram utilizados como base para predição da linhagem viral. Foram identificados 6 tipos de vírus pertencentes à ordem Caudovirales, que infectam Proteobacteria e Firmicutes. Esse trabalho sustenta a hipótese de que os fagos infectam os grupos bacterianos mais abundantes nos manguezais e podem carregar genes importantes consigo, desempenhando papel chave na evolução das bactérias nesse ambiente. / Mangroves are coastal transitional ecossystems between marine and terrestral environments of tropical and intertropical zones and are subject to tidal regime. Due those condictions, microorganisms that lives in the sediments suffer constant adaptative pressure. In this context, Mobile Genetic Elements (MGEs) (phages, plasmids and transposons) are genetic fators directly related with horizontal gene transfer and can facilitate adaptation processes. In this work MGEs were studied in the sediments of three mangrove areas in São Paulo state, two located in Bertioga county and one in environmental reserve of Ilha do Cardoso, in Cananeia. Frequency and expression were avaliated for diferente EGMs types in mangrove microbiome from the sediments metagenomes and metatranscriptomes, besides utilization os a fosmid library assembled from a Bertioga area sediment DNA. The sequences of DNA and mRNA were obtained from three sampled points, sequenced in Illumina HiSeq2000 equipment and automatically anotaded in MG-RAST plataform. A pool of all clone were sequenced for fosmid library in Illumina HiSeq2000 equipment. Contigs were assembled and phages and prophages were automatically predicted in VirSorter pipeline. The phages or prophages predicted sequences were manually anotaded. From the analisys os metagenomic sequences was possible to verify that the MGEs participation in total microbiome metabolism stands for 6 to 15% of predicted genes, wich 90% corresponds to phage associated genes. From contigs assembled of library sequences, 27 phages were predicted and annotaded, wich nine code for phage typical proteins, as capsid, transposase and integrase, besides accessory genes potencially important, as ABC transporter and type II transport related. Phage conserved genes were used as base for viral lineage prediction. 6 viral types belonging do Caudovirales order were identified, which infects Proteobacteria and Firmicutes. This work supports the hypothesis that phages infect the most abundant bacterial groups in mangroves and can carry important genes playing a key role in bacterial evolution in this environment.
142

Novel control of the sheep scab mite, Psoroptes ovis, through the application of bacteriophage therapy

Hall, Sarah Alice January 2011 (has links)
Psoroptes ovis mites are the causative parasites of sheep scab disease. It is a contagious disease which causes intense pruritus, wool loss and the development of lesions. These lesions are exacerbated by secondary bacterial infections. Bacteria appear to play an integrated role in the pathogenicity of this disease and are found in the internal cavities of P. ovis. The aim of this study was to investigate these bacterial associations, with the aim of identifying a microbial target for sheep scab control. The microbial communities associated with sheep scab were investigated using both molecular and bacteriological techniques. Several environmental niches were targeted: scab-infected fleece, internal mite cavity and excreted faecal trails. Microbial communities were very complex, with a variety of species and bacterial groups identified. Some bacteria were common to all environments, whereas others were isolated from one sample. Both natural and in vivo cultured mites were investigated in an attempt to identify universal and potentially beneficial bacteria. In addition, P. ovis mites were screened using PCR to detect potential endosymbiotic bacteria. Positive identification was made of Comamonas sp. in both natural and in vivo cultured mites; this species has been identified as an endosymbiont in other arthropods and its role in P. ovis requires further investigation. In vitro feeding experiments were carried out with P. ovis mites in the laboratory. Initially mite chambers were constructed and optimised to encourage maintenance of P. ovis off-host. A number of diets were tested and antibiotics were compared for their effect on bacteria within P. ovis. In vitro experiments revealed that P. ovis survival was significantly reduced with the administration of antibiotics and there was also evidence that they altered internal bacterial densities. The potential of bacteriophage therapy for the microbial control of bacteria associated with P. ovis was investigated. Bacteria isolated from P. ovis faecal trails were used to isolate bacteriophage from environmental samples. Sixteen bacteriophage were successfully isolated, which were infective against three mite faecal bacteria. Isolated bacteriophage were characterised by a number of methods including their response to chemicals, enzyme and infection dynamics in both solid and liquid phases. In vitro experiments with bacteriophage were also investigated, resulting in a significantly reduced mite lifespan seen with some bacteriophage lysates. The potential for using bacteriophage for the control of P. ovis mites is discussed.
143

Engineering bacteriophage encapsulation processes to improve stability and controlled release using pH responsive formulations

Vinner, Gurinder K. January 2018 (has links)
Enteric pathogens form a large part of infectious diseases which contribute to a bulk of the healthcare costs. Enteric infections are usually contracted via the faecal-oral route or through contact with contaminated surfaces. Treatment by antibiotics is becoming increasingly ineffective due to the growing number of antibiotic resistant strains. Anti-microbial resistance poses a serious threat to the future of healthcare worldwide and necessitates the search for alternate forms of therapy. Bacteriophages (phages), are viruses which specifically infect and lyse bacteria. To introduce phages as a viable form of therapy, route of administration needs to be considered carefully. Model phages with broad host ranges are ideal for therapy however oral delivery to the lower gastro-intestinal (GI) poses several challenges. The acidic stomach environment can be detrimental to phages, rendering them inactive during passage. To overcome this challenge and improve the stability of phage during encapsulation and storage, this PhD research has been conducted. pH responsive polymers, Eudragit and alginate were used to develop composite microparticles which protected phage from acidic pH (pH 1-3). A novel method of acidifying oil was developed for crosslinking droplets in vitro to avoid the use of harsh solvent systems that can cause phage inactivation. Platform microfluidic technology was employed for phage encapsulation for the first time. Monodispersed droplets and particles were produced, offering fine-tuning of droplet diameter to tailor the release and pH protection of encapsulated phage. Process scale-up was attempted using membrane emulsification (ME) to produce larger volumes of encapsulated phage. In vitro and in-situ models investigated the efficacy of encapsulated phage-bacterial killing. Industrial scale method of spray drying, and electrospinning were also used to demonstrate the versatility of the formulation. Tableting dry powder phage, showed an effective method for producing solid dosage forms for therapy. Additionally, electrospun phage fibres also showed the potential use of pH responsive formulations in addressing wound infections. Improvement in encapsulated phage storage stability was observed with the addition of trehalose in the formulation. This research underpins the need for testing phage encapsulation for site-specific delivery and offers insight into the potential use of commercially available technologies.
144

IDENTIFICATION AND CHARACTERIZATION OF GATase1-LIKE AraC-FAMILY TRANSCRIPTIONAL REGULATORS IN BURKHOLDERIA THAILANDENSIS.

Nock, Adam Michael 01 January 2018 (has links)
The ability of bacteria to detect their surroundings and enact an appropriate response is critical for survival. Translation of external signals into a coherent response requires specific control over the transcription of DNA into RNA. Much of the regulation at this step is accomplished by transcriptional regulators, proteins that bind to DNA and alter gene expression. A wide-spread variety of regulators in bacteria is the AraC-family. These regulators are divided into two conserved domains and respond to a variety of compounds owing to different N-terminal domains. A subfamily of these regulators, GATase1-like AraC-family transcriptional regulators (GATRs), is described. These proteins contain an N-terminal domain with structural characteristics similar to enzymes that synthesize amine-containing compounds. Members of this subfamily of transcriptional regulators are found in a wide range of bacteria, however, few are characterized. A relatively high number of GATRs are encoded in the Burkholderia thailandensis genome. Therefore, we utilized this bacterium as a model to explore the function and diversity of these regulators. GATRs in B. thailandensis divided into two groups based on bioinformatics analysis. The first group includes three members which we identified that contribute to the positive regulation of glycine betaine (GB) catabolism. GB can be utilized as a nutrient source or as a potent osmoprotectant. The regulation of this pathway in B. thailandensis differs from previously established models due to the interplay of these regulators. Homologs of two other GATRs in this group were identified that regulate carnitine and arginine catabolism. The second group of GATRs contains uncharacterized members with no known functions. A genetic strategy for engineering constitutive GATRs was developed and employed to investigate the transcriptional regulons of these GATRs. This approach yielded the identification of a novel GATR that represses expression of an operon producing a formaldehyde detoxification system, and is the first example of a GATR that functions as a repressor.
145

Structure-Function Studies of Bacteriophage P2 Integrase and Cox protein

Eriksson, Jesper January 2005 (has links)
<p>Probably no group of organisms has been as important as bacteriophages when it comes to the understanding of fundamental biological processes like transcriptional control, DNA replication, site-specific recombination, e.t.c.</p><p>The work presented in this thesis is a contribution towards the complete understanding of these organisms. Two proteins, integrase, and Cox, which are important for the choice of the life mode of bacteriophage P2, are investigated. P2 is a temperate phage, i.e. it can either insert its DNA into the host chromosome (by site-specific recombination) and wait (lysogeny), or it can produce new progeny with the help of the host protein machinery and thereafter lyse the cell (lytic cycle). The integrase protein is necessary for the integration and excision of the phage genome. The Cox protein is involved as a directional factor in the site-specific recombination, where it stimulates excision and inhibits integration. It has been shown that the Cox protein also is important for the choice of the lytic cycle. The choice of life mode is regulated on a transcriptional level, where two mutually exclusive promoters direct whether the lytic cycle (Pe) or lysogeny (Pc) is chosen. The Cox pro-tein has been shown to repress the Pc promoter and thereby making tran-scription from the Pe promoter possible, leading to the lytic cycle. Further, the Cox protein can function as a transcriptional activator on the parasite phage, P4. P4 has gained the ability to adopt the P2 protein machinery to its own purposes.</p><p>In this work the importance of the native size for biologically active integrase and Cox proteins has been determined. Further, structure-function analyses of the two proteins have been performed with focus on the protein-protein interfaces. In addition it is shown that P2 Cox and the P2 relative Wphi Cox changes the DNA topology upon specific binding. From the obtained results a mechanism for P2 Cox-DNA interaction is discussed.</p><p>The results from this thesis can be used in the development of a gene delivery system based on the P2 site-specific recombination system.</p>
146

Structural stability effects on adsorption of bacteriophage T4 lysozyme to colloidal silica

Tian, Minghua 31 May 1996 (has links)
Circular dichroism (CD) spectra were obtained for bacteriophage T4 lysozyme and three of its mutants in the presence and absence of colloidal silica nanoparticles. Mutant lysozymes were produced by substitution of the isoleucine at position 3 with tryptophan, cysteine and leucine. Each substitution resulted in an altered structural stability, quantified by a difference in free energy of unfolding from the wild type. CD spectra recorded in the absence of colloidal silica agreed with x-ray diffraction data in that the mutants and wild type showed similar secondary structures. CD spectra of protein-nanoparticle complexes recorded after contact for 90 minutes showed significant differences from those recorded in the absence of nanoparticles, and these differences varied among the proteins. The percentage of a-helix lost in these proteins upon adsorption to silica nanoparticles was also recorded as a function of time by CD. For a 1:2 protein to particle mixture, different kinetic behaviors were observed among the proteins. The more unstable the protein, the greater the rate and extent of secondary structure loss upon adsorption. For a 1:1 protein to particle mixture, only results recorded with the tryptophan mutant were significantly different from the other variants. The kinetic data recorded for the 1:2 protein to particle ratio was evaluated using two different protein adsorption models. Both models allow proteins at an interface to exist in two different states: state 1 molecules retain their native conformation, while state 2 molecules lose a certain amount of their native secondary structure and occupy more surface area than state 1 molecules. The main difference between these two models is that one allows state 2 molecules to be adsorbed directly from solution, while the other requires that state 2 molecules be generated by surface-induced conversion of state 1 molecules. The former model showed a better fit to the data than the latter from a least squares comparison. Both models indicated that proteins of lower thermal stability have a greater tendency to adopt state 2 on silica. / Graduation date: 1997
147

Bacteriophage T4 ribonucleotide reductase : genes and proteins

Hanson, Eric Scott 09 September 1994 (has links)
Graduation date: 1995
148

Group I Introns and Homing Endonucleases in T-even-like Bacteriophages

Sandegren, Linus January 2004 (has links)
Homing endonucleases are rare-cutting enzymes that cleave DNA at a site near their own location, preferentially in alleles lacking the homing endonuclease gene (HEG). By cleaving HEG-less alleles the homing endonuclease can mediate the transfer of its own gene to the cleaved site via a process called homing, involving double strand break repair. Via homing, HEGs are efficiently transferred into new genomes when horizontal exchange of DNA occurs between organisms. Group I introns are intervening sequences that can catalyse their own excision from the unprocessed transcript without the need of any proteins. They are widespread, occurring both in eukaryotes and prokaryotes and in their viruses. Many group I introns encode a HEG within them that confers mobility also to the intron and mediates the combined transfer of the intron/HEG to intronless alleles via homing. Bacteriophage T4 contains three such group I introns and at least 12 freestanding HEGs in its genome. The majority of phages besides T4 do not contain any introns, and freestanding HEGs are also scarcely represented among other phages. In the first paper we looked into why group I introns are so rare in phages related to T4 in spite of the fact that they can spread between phages via homing. We have identified the first phage besides T4 that contains all three T-even introns and also shown that homing of at least one of the introns has occurred recently between some of the phages in Nature. We also show that intron homing can be highly efficient between related phages if two phages infect the same bacterium but that there also exists counteracting mechanisms that can restrict the spread of introns between phages. In the second paper we have looked at how the presence of introns can affect gene expression in the phage. We find that the efficiency of splicing can be affected by variation of translation of the upstream exon for all three introns in T4. Furthermore, we find that splicing is also compromised upon infection of stationary-phase bacteria. This is the first time that the efficiency of self-splicing of group I introns has been coupled to environmental conditions and the potential effect of this on phage viability is discussed. In the third paper we have characterised two novel freestanding homing endonucleases that in some T-even-like phages replace two of the putative HEGs in T4. We also present a new theory on why it is a selective advantage for freestanding, phage homing endonucleases to cleave both HEG-containing and HEG-less genomes.
149

Structure-Function Studies of Bacteriophage P2 Integrase and Cox protein

Eriksson, Jesper January 2005 (has links)
Probably no group of organisms has been as important as bacteriophages when it comes to the understanding of fundamental biological processes like transcriptional control, DNA replication, site-specific recombination, e.t.c. The work presented in this thesis is a contribution towards the complete understanding of these organisms. Two proteins, integrase, and Cox, which are important for the choice of the life mode of bacteriophage P2, are investigated. P2 is a temperate phage, i.e. it can either insert its DNA into the host chromosome (by site-specific recombination) and wait (lysogeny), or it can produce new progeny with the help of the host protein machinery and thereafter lyse the cell (lytic cycle). The integrase protein is necessary for the integration and excision of the phage genome. The Cox protein is involved as a directional factor in the site-specific recombination, where it stimulates excision and inhibits integration. It has been shown that the Cox protein also is important for the choice of the lytic cycle. The choice of life mode is regulated on a transcriptional level, where two mutually exclusive promoters direct whether the lytic cycle (Pe) or lysogeny (Pc) is chosen. The Cox pro-tein has been shown to repress the Pc promoter and thereby making tran-scription from the Pe promoter possible, leading to the lytic cycle. Further, the Cox protein can function as a transcriptional activator on the parasite phage, P4. P4 has gained the ability to adopt the P2 protein machinery to its own purposes. In this work the importance of the native size for biologically active integrase and Cox proteins has been determined. Further, structure-function analyses of the two proteins have been performed with focus on the protein-protein interfaces. In addition it is shown that P2 Cox and the P2 relative Wphi Cox changes the DNA topology upon specific binding. From the obtained results a mechanism for P2 Cox-DNA interaction is discussed. The results from this thesis can be used in the development of a gene delivery system based on the P2 site-specific recombination system.
150

Site-specific recombination of P2-like phages; possible tools for safe gene therapy : A focus on phage ΦD145

Mandali, Sridhar January 2010 (has links)
P2-like bacteriophages integrate their genome into the E. coli host cell by a site-specific recombination event upon lysogenization. The integrative recombination occurs between a specific sequence in the phage genome, attP, and a specific sequence in the host genome, attB, generating the host-phage junctions attL and attR. The integration is mediated by the phage enzyme integrase (Int) and the host factor IHF. The excisive recombination takes place between attL and attR, and is mediated by Int, IHF and phage encoded protein Cox. For safe integration of foreign genes into eukaryotic chromosome a recombinases is necessary which can perform the integration site-specifically. P2-like phage integrases have the potential to become tools for safe gene therapy. Their target is simple but specific, and once integration has occurred it is very stable in the absence of the Cox protein. The site-specific recombination mechanism has to be understood at the molecular level. Therefore, I have initiated the characterization of the site-specific recombination system of the P2-like phage ΦD145. In this work, Int and IHF are shown to bind to the different attachment sites cooperatively. One of two possible inverted repeats in attP is shown to be the Int core recognition site. The attP core of this phage has high identity with a site on human chromosome, denoted as ΨattB. In this study we have shown that in in vivo recombination ΦD145 Int can accept ΨattB in both bacteria and in eukaryotic cells. Also shown that Int consists of an intrinsic nuclear localization signal. A study also reveled that ΦD145 Int activity was affected by the Tyr-phosphorylation. Attempts have been made to change the specificity of the other P2-like phage P2 and WΦ integrases and also structural and functional analysis was done. A study on comparative analysis of Cox proteins and Cox binding sites gave us the basic information about the recombination mechanism. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript.

Page generated in 0.0735 seconds