• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zero-Group-Velocity Propagation Of Electromagnetic Wave Through Nanomaterial

Fan, Taian 01 January 2016 (has links)
This research will investigate the problem on the propagation of electromagnetic wave through a specific nanomaterial. The nanomaterial analyzed is a material consisting of a field of Pt nanorods. This field of Pt nanorods are deposited on a substrate which consists of a RuO2 nano structure. When the nanorod is exposed to an electron beam emitted by a TEM (Transmission electron microscopy). A wave disturbance has been observed. A video taken within the chamber shows a wave with a speed in the scale of um/s (Á?10Á?^(-6) m/s), which is 14 orders of magnitude lower than speed of light in free space (approximate 3ÁÁ?10Á?^8 m/s ). A physical and mathematical model is developed to explain this phenomenon. Due to the process of fabrication, the geometry of the decorated Pt nanorod field is assumed to be approximately periodic. The nanomaterials possess properties similar to a photonic crystal. Pt, as a noble metal, shows dispersive behaviours that is different from those ones of a perfect or good conductors. A FDTD algorithm is implemented to calculate the band diagram of the nanomaterials. To explore the dispersive properties of the Pt nanorod field, the FDTD algorithm is corrected with a Drude Model. The analysis of the corrected band diagram illustrates that the group velocity of the wave packet propagating through the nanomaterial can be positive, negative or zero. The possible zero-group velocity is therefore used to explain the extremely low velocity of wave (wave envelope) detected in the TEM.
2

Dispersion Characteristics of One-dimensional Photonic Band Gap Structures Composed of Metallic Inclusions

Khodami, Maryam 22 August 2012 (has links)
An innovative approach for characterization of one dimensional Photonic Band Gap structures comprised of metallic inclusions (i.e. subwavelength dipole elements or resonant ring elements) is presented. Through an efficient S- to T-parameters conversion technique, a detailed analysis has been performed to investigate the variation of the dispersion characteristics of 1-D PBG structures as a function of the cell element configuration. Also, for the first time, the angular sensitivity of the structure has been studied in order to obtain the projected band diagrams for both TE and TM polarizations. Polarization sensitivity of the subwavelength cell element is exploited to propose a novel combination of elements which allows achieving PBGs with simultaneous frequency and polarization selectivity. The proposed approach demonstrates that the dispersion characteristic of each orthogonal polarization can be independently adjusted with dipole elements parallel to that same polarization. Generally, the structure has potential applications in orthomode transducer, and generally whenever the polarization of the incoming signal is to be used as a means of separating it from another signal in the same frequency band that is of orthogonal polarization. The current distribution and the resonance behavior of the ring element is studied and the effect of resonance on dispersion characteristics of 1-D PBGs composed of rings is investigated for the first time, for both individual and coupled rings. Interestingly, it is observed that 1-D PBG composed of resonant elements consistently has a bandgap around the resonant frequency of the single layer structure.
3

Dispersion Characteristics of One-dimensional Photonic Band Gap Structures Composed of Metallic Inclusions

Khodami, Maryam 22 August 2012 (has links)
An innovative approach for characterization of one dimensional Photonic Band Gap structures comprised of metallic inclusions (i.e. subwavelength dipole elements or resonant ring elements) is presented. Through an efficient S- to T-parameters conversion technique, a detailed analysis has been performed to investigate the variation of the dispersion characteristics of 1-D PBG structures as a function of the cell element configuration. Also, for the first time, the angular sensitivity of the structure has been studied in order to obtain the projected band diagrams for both TE and TM polarizations. Polarization sensitivity of the subwavelength cell element is exploited to propose a novel combination of elements which allows achieving PBGs with simultaneous frequency and polarization selectivity. The proposed approach demonstrates that the dispersion characteristic of each orthogonal polarization can be independently adjusted with dipole elements parallel to that same polarization. Generally, the structure has potential applications in orthomode transducer, and generally whenever the polarization of the incoming signal is to be used as a means of separating it from another signal in the same frequency band that is of orthogonal polarization. The current distribution and the resonance behavior of the ring element is studied and the effect of resonance on dispersion characteristics of 1-D PBGs composed of rings is investigated for the first time, for both individual and coupled rings. Interestingly, it is observed that 1-D PBG composed of resonant elements consistently has a bandgap around the resonant frequency of the single layer structure.
4

Dispersion Characteristics of One-dimensional Photonic Band Gap Structures Composed of Metallic Inclusions

Khodami, Maryam January 2012 (has links)
An innovative approach for characterization of one dimensional Photonic Band Gap structures comprised of metallic inclusions (i.e. subwavelength dipole elements or resonant ring elements) is presented. Through an efficient S- to T-parameters conversion technique, a detailed analysis has been performed to investigate the variation of the dispersion characteristics of 1-D PBG structures as a function of the cell element configuration. Also, for the first time, the angular sensitivity of the structure has been studied in order to obtain the projected band diagrams for both TE and TM polarizations. Polarization sensitivity of the subwavelength cell element is exploited to propose a novel combination of elements which allows achieving PBGs with simultaneous frequency and polarization selectivity. The proposed approach demonstrates that the dispersion characteristic of each orthogonal polarization can be independently adjusted with dipole elements parallel to that same polarization. Generally, the structure has potential applications in orthomode transducer, and generally whenever the polarization of the incoming signal is to be used as a means of separating it from another signal in the same frequency band that is of orthogonal polarization. The current distribution and the resonance behavior of the ring element is studied and the effect of resonance on dispersion characteristics of 1-D PBGs composed of rings is investigated for the first time, for both individual and coupled rings. Interestingly, it is observed that 1-D PBG composed of resonant elements consistently has a bandgap around the resonant frequency of the single layer structure.

Page generated in 0.0572 seconds