• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photocurrent and Electroabsorption Spectroscopy for Semiconductor Quantum Well Structures

Fan, Hsiang-Pin 10 July 2001 (has links)
In this thesis, we have setup the measurement systems for photocurrent and electro-absorption (Da) spectroscopy, and have investigated the optical characteristics of semiconductor quantum well structures in the long wavelength regime. The measured samples are of three epi-structures including a p-i-n laser structure of the symmetric multiple quantum wells (SMQWs), a p-i-n laser structure of the asymmetric multiple quantum wells (AMQWs), and n-i-n BRAQWETS structures. The samples are fabricated in mesa type photodiode structures for the measurements. From the Da spectrum of the n-i-n BRAQWETS structures, we observe a blue shift ~ 10nm of Da peak caused by band filling effect at +5V bias. Besides, a red shift ~ 2nm has been obtained at ¡V5V bias caused by the quantum-confined Stark effect. The photocurrent spectrum of the SMQWs shows an e1-hh1 absorption peak at hn=0.813eV (l=1.525mm) which matches the photoluminesce spectrum. The e1-hh1 transition has a red-shift ~ 38nm at ¡V5V bias for the SMQWs. For the AMQWs consisting of 5, 10, 15nm wells, we observe the e1-hh1 absorption peaks at 0.758eV (l=1.64mm), 0.772eV (l=1.6mm) and 0.797eV (l=1.55mm), respectively. As the AMQWs biased at ¡V5V, a red-shift ~ 25nm is obtained for the e1-hh1 transition corresponding to the 15nm-wide wells.
2

Chemistry and Physics of Cu and H2O on ZnO Surfaces : Electron Transfer, Surface Triangles, and Theory

Hellström, Matti January 2015 (has links)
This thesis discusses the chemistry and physics of Cu and H2O on ZnO surfaces, based primarily on results from quantum chemical calculations. The underlying context is heterogeneous catalysis, where Cu/ZnO-mixtures are used in the industrial synthesis of methanol and in the water gas shift reaction. Electron transfer between small Cu clusters and ZnO is central to this thesis, as are the design and use of models that can describe realistic and very large-scale ZnO surface structures while still retaining the electronic nature of the system. Method and model enhancements as well as tests and validations constitute a large part of this thesis. The thesis demonstrates that the charges of small Cu clusters, adsorbed on the non-polar ZnO(10-10) surface, depend on whether the Cu clusters contain an even or odd number of atoms, and whether water is present (water can induce electron transfer from Cu to ZnO). On the polar Zn-terminated ZnO(0001) surface, Cu becomes negatively charged, which causes it to attract positively charged subsurface defects and to wet the ZnO(0001) surface at elevated temperatures. When a Cu cluster on a ZnO surface becomes positively charged, this happens because it donates an electron to the ZnO conduction band. Hence, it is necessary to use a method which describes the ZnO band gap correctly, and we show that a hybrid density functional, which includes a fraction of Hartree-Fock exchange, fulfills this requirement. When the ZnO conduction band becomes populated by electrons from Cu, band-filling occurs, which affects the adsorption energy. The band-filling correction is presented as a means to extrapolate the calculated adsorption energy under periodic boundary conditions to the zero coverage (isolated adsorbate, infinite supercell) limit. A part of this thesis concerns the parameterization of the computationally very efficient SCC-DFTB method (density functional based tight binding with self-consistent charges), in a multi-scale modeling approach. Our findings suggest that the SCC-DFTB method satisfactorily describes the interaction between ZnO surfaces and water, as well as the stabilities of different surface reconstructions (such as triangularly and hexagonally shaped pits) at the polar ZnO(0001) and ZnO(000-1) surfaces.
3

Hot Carriers in Thin-film Absorbers

Zhang, Qingrong January 2021 (has links)
Solar energy is one of the most promising sources of confronting the energy crisis. And hot carrier solar cell can be the future to increase the efficiency of solar cells to exceed to the theoretical efficiency limit, Shockley-Queisser limit. After theoretical understanding of some essential aspects of hot carrier solar cell, to better understand the properties of hot carriers and the thermalization mechanisms behind it, analysis is conducted based on the photoluminescence spectra of GaAs thin-film absorber samples with different thicknesses. According to the results of the analysis, information on the properties of hot carriers in thin-film GaAs absorbers will be extracted, as well as a conclusion based on those results. / Solenergi är en av de mest lovande källorna för att konfrontera energikrisen. Och heta bärsolceller kan vara framtiden för att öka solcellernas effektivitet till att överskrida den teoretiska effektivitetsgränsen, Shockley-Queisser-gränsen. Efter teoretisk förståelse av några väsentliga aspekter av varmbärarsolceller, för att bättre förstå egenskaperna hos heta bärare och termismeringsmekanismerna bakom den, utförs analys baserad på fotoluminescensspektra för GaAs tunnfilmsabsorberprover med olika tjocklekar. Enligt resultaten av analysen kommer information om egenskaperna hos heta bärare i tunnfilmiga GaA-absorberare att extraheras, liksom en slutsats baserad på dessa resultat.

Page generated in 0.0909 seconds