Spelling suggestions: "subject:"barbell back squid""
1 |
The Kinematic Differences Between a Barbell Back Squat Wearing Weightlifting Shoes and BarefootJosefsson, Anthony January 2016 (has links)
Abstract Background: The squat is one of the most used exercises in the field of strength and conditioning. It is included as a core exercise in many sports training programmes to enhance athletic performance due to its biomechanical and neuromuscular similarities of a wide range of athletic movements. The barbell squat commonly used by athletes participating in resistance training and it is generally performed using regular athletic shoes or specially designed weightlifting shoes. However it is now getting more common to perform the barbell back squat in barefoot or in barefoot-inspired foot wear. Weightlifting shoes may be well known to weightlifters but to the noncompetitive lifters and professional athletes they are in general unfamiliar. It is believed that the structure of the weightlifting shoe supports proper squat mechanism. There is however limited scientific data reporting on the use of weightlifting shoes and therefore, it may be needed to investigate how weightlifting shoes affects the lower body lifting kinematics in the back squat compared to other conditions. Aim: The aim of the study was to compare the kinematic differences that appears in the sagittal plane when performing a barbell back squat wearing weightlifting shoes and barefoot. Method: Fifteen healthy participants (n=15) completed the study. The study included the barbell back squat in three sets of three repetitions on 50, 60 and 70% of the participant’s 1RM. The participants performed the movement in both weightlifting shoes and barefoot in an order randomly chosen and all movements was recorded with a digital camera from the sagittal plane. Results: The results showed that the angles were greater in the weightlifting shoe condition on all percentage. The results showed that there was no statistical significance in the hip angle at 50% of 1RM (p= 0,370) or at 70% (p = 0,053) but a statistical significance in the hip angle at 60 % (p = 0,028). The results showed no statistical significance in the ankle angle at 50% of 1RM (p = 0,997), 60% (p = 0,182) or 70 % (p = 0,332). Conclusion: Findings from this study did not demonstrate that there was a significant difference between performing a barbell back squat in weightlifting shoes and barefoot. More research is needed to investigate and compare more variables in the difference between performing a barbell back squat wearing weightlifting shoes and barefoot.
|
2 |
Comparison of Back Squat Kinematics Between Barefoot and Shoe ConditionsSato, Kimitake, Fortenbaugh, Dave, Hydock, David S., Heise, Gary D. 01 September 2013 (has links)
The purpose of the study was to compare the kinematics of the barbell back squat between two footwear conditions and to evaluate the results with respect to recommendations put forth in the National Strength and Conditioning Association position statement for proper squat technique. Twenty-five subjects with 5 - 7 years of resistance training experience participated. Selected kinematics were measured during a 60% of 1RM barbell back squat in both barefoot and athletic shoe conditions. Paired-samples T tests were performed to compare the two footwear conditions. Significant differences were found in trunk (50.72±8.27 vs. 46.97±9.87), thigh (20.94±10.19 vs. 24.42±11.11), and shank segment angles (59.47±5.54 vs. 62.75±6.17), and knee joint angles (81.33±13.70 vs. 88.32±15.45) at the peak descent position. Based on the kinematic analysis of the barefoot squat, two kinematic advantages are countered by two disadvantages. Coaches and instructors should acknowledge these results with respect to a performer's capability, and be aware the advantages and disadvantages of barefoot squat from a kinematic perspective.
|
3 |
Comparison of Back Squat Kinematics Between Barefoot and Shoe ConditionsSato, Kimitake, Fortenbaugh, Dave, Hydock, David S., Heise, Gary D. 01 September 2013 (has links)
The purpose of the study was to compare the kinematics of the barbell back squat between two footwear conditions and to evaluate the results with respect to recommendations put forth in the National Strength and Conditioning Association position statement for proper squat technique. Twenty-five subjects with 5 - 7 years of resistance training experience participated. Selected kinematics were measured during a 60% of 1RM barbell back squat in both barefoot and athletic shoe conditions. Paired-samples T tests were performed to compare the two footwear conditions. Significant differences were found in trunk (50.72±8.27 vs. 46.97±9.87), thigh (20.94±10.19 vs. 24.42±11.11), and shank segment angles (59.47±5.54 vs. 62.75±6.17), and knee joint angles (81.33±13.70 vs. 88.32±15.45) at the peak descent position. Based on the kinematic analysis of the barefoot squat, two kinematic advantages are countered by two disadvantages. Coaches and instructors should acknowledge these results with respect to a performer's capability, and be aware the advantages and disadvantages of barefoot squat from a kinematic perspective.
|
4 |
Examination of Bar Velocity in Barbell Back SquatSato, Kimitake, Carroll, Kevin M., Stone, Michael H. 01 July 2016 (has links)
The aim of the study was to examine repetition to repetition changes of bar velocity and its variations from barbell back squat. Participants (N=19) performed back squat with a relative intensity of 78-80% of 1 RM. Bar velocity was captured using wireless device (PUSHtm) placed on their forearm. Data were collected from 3 sets of 10 repetitions. One-way repeated measures ANOVA was used to identify the velocity changes over 10 repetitions. Statistical significance was found (F(1,17)=45.06.~ 0 . 0 0 0 1 )T.h is indicates that the bar velocity decreased significantly over the 10 repetitions. At the same time, coefficient of variance also increased as the repetitions went higher, indicating that there were differences in individual responses of bar velocity changes. Further examination will be aimed to investigate the bar velocity changes from various strength level of individuals.
|
5 |
The Effects of Different Set Configurations on Concentric Velocities in the Barbell Back SquatWong, Hanson 01 August 2020 (has links)
The purpose of this study was to determine if concentric velocities of lighter loads of could be augmented if they are performed heavier working sets. Twelve trained males with experience in the barbell back squat performed a 5RM and completed two separate squat training session conditions that consisted of three sets of five repetitions with 85% of their 5RM. Both conditions differed in the placement of a reduced-load set that was either performed after the working sets or during the warm-up period. No significant differences were observed in the working set MCVs in both conditions. Additionally, no significant differences were observed amongst MCVs in the Down Set and equivalent warm-up set loads. The results of this study suggest that postactivation potentiation may not occur using a similar set-load scheme.
|
Page generated in 0.08 seconds