• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 968
  • 198
  • 175
  • 161
  • 100
  • 58
  • 51
  • 26
  • 21
  • 18
  • 17
  • 17
  • 13
  • 11
  • 9
  • Tagged with
  • 2192
  • 410
  • 377
  • 243
  • 200
  • 189
  • 176
  • 137
  • 131
  • 126
  • 116
  • 110
  • 105
  • 103
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
561

Modulation of brain activity with low intensity focused ultrasound / Modulation de l’activité cérébrale par ultrasons focalisés de faible intensité

Constans, Charlotte 21 September 2018 (has links)
Devant l'impact des maladies neurodégénératives sur la société, les thérapies par ultrasons focalisés apparaissent comme des techniques prometteuses combinant non invasivité, précision spatiale millimétrique et capacité d'atteindre les structures profondes du cerveau. Cependant, des travaux sont encore nécessaires pour renforcer les effets de la neuromodulation, comprendre les mécanismes sous-jacents et contrôler la sûreté de la technique avant d'entreprendre des essais cliniques. Dans cette thèse, la propagation des ultrasons dans le cerveau de rongeurs et de singes a été étudiée numériquement afin d'estimer l'intensité acoustique dans le cerveau, la répartition spatiale des ondes dans la boîte crânienne et l'élévation de température. Afin d'évaluer physiologiquement les effets des ultrasons à l'échelle cellulaire, l'activité de neurones uniques a été mesurée sur des macaques éveillés pendant une neuromodulation ultrasonore. Puis, la durée de l’effet de modulation a été augmentée grâce à une prolongation du tir sur des singes exécutant une tâche visuelle. L'imagerie fonctionnelle par IRM a ensuite permis de faire ressortir des changements de connectivité entre l'aire stimulée et des régions du cerveau éloignées.Enfin, les avantages de la neurostimulation par ultrasons ont été combinés avec l'efficacité d'un agent neuroactif. En utilisant des microbulles conjointement aux ultrasons, la barrière hémato-encéphalique a été ouverte localement et réversiblement dans le cortex visuel de macaques anesthésiés pour permettre le passage d'un neurotransmetteur inhibiteur dans le cerveau. La baisse d'amplitude des réponses EEG du cortex visuel à des stimuli démontre la faisabilité de la délivrance locale et non invasive de neuromodulateurs dans le cerveau. Ainsi, les paramètres ultrasonores ont été optimisés grâce aux simulations numériques et à des expériences in vivo pour renforcer les effets de neuromodulation tout en contrôlant les effets indésirables, avec l'objectif de se diriger vers des applications thérapeutiques et proposer de nouveaux outils pour des études de connectivité cérébrale / Considering the extent of neurodegenerative diseases consequences on the society, focused ultrasound appears as a promising technique combining non-invasiveness, millimetric spatial accuracy and ability to reach deep brain structures. However, efforts still need to be made to amplify the effects of focused ultrasound neuromodulation, understand its mechanism and control the safety of the technique before moving towards human trials.The ultrasound propagation inside the brain of rodents and monkeys was first studied numerically to estimate the maximum intensity in the brain, the pressure distribution in the skull cavity and the thermal rise. To evaluate physiologically the ultrasound effects at the cellular level, the activity of individual neurons was measured on awake macaques during ultrasonic neuromodulation. To further increase the duration of the modulation, a longer sonication was tested successfully on macaques performing a visual task. Functional MRI was then used to highlight the connectivity changes between the stimulated area and distant cerebral regions. Finally, the advantages of ultrasound neurostimulation were combined with the efficiency of a neuroactive agent (GABA). Using microbubbles and ultrasound, the blood brain barrier was opened locally and reversibly in the visual cortex of anesthetized macaques to deliver an inhibitory neurotransmitter in the brain. The amplitude of the EEG response of the visual cortex to stimuli decreased after GABA injection, demonstrating the feasibility of delivering neuroactive drugs non-invasively and locally to any brain region.Overall, ultrasound parameters were optimized with both numerical tools and in vivo experiments to amplify neuromodulation effects while controlling the safety. This work opens the way to the development of novel therapeutic applications and new tools for connectivity studies
562

Electronic Structure Characterization of Hybrid Materials

Li, Zhi 03 February 2014 (has links)
In this dissertation, the studies aim to characterize the electronic structure at the internal interface of hybrid materials. The characterization challenge is originating from the spectral superposition of hybrid constituents. A characterization protocol based on photoemission spectroscopy (PES) was developed and applied to investigate the orbital alignment at the internal interface of the oligothiophene-TiO2 and ArS-CdSe hybrid materials by characterizing the individual constituents and the assembly hybrids respectively. Electrospray deposition technique was used to deposit targeting materials which enabled preparation of thin films in vacuum minimizing ambient contaminations while transmission electron microscopy (TEM) was used to investigate the morphology and the particle size of the pure nanoparticles and the hybrids. Ultraviolet-visible (UV-vis) spectroscopy was also used in the estimation of the optical band gap of the pure nanoparticles and the HOMO-LUMO gap of the organic ligands. One of the hybrid materials studied in this dissertation is oligothiophene-TiO2 nanoparticle hybrids in which the oligothiophene ligands are bonded to the surface of TiO2 nanoparticles covalently. This hybrid system was used to develop and demonstrate a measurement protocol to characterize the orbital alignment at the internal interface. Low intensity X-ray photoemission spectroscopy (LIXPS) was used to determine the work function of the oligothiophene ligands and the TiO2 nanoparticles. In combination with the highest occupied molecular orbital (HOMO) cutoff and the valence band maximum (VBM) measured by ultraviolet photoemission spectroscopy (UPS), the ionization energies (IE) of these two constituents were determined. X-ray photoemission spectroscopy (XPS) was used to characterize the core level emissions of the constituents and the hybrid assembly, which were used to determine the charge injection barriers at the internal interface. The results showed that there was an interface dipole at the internal interface between organic and inorganic constituents of the hybrid. The dipole was determined to be 0.61 eV and the hole injection barrier at the internal interface amounted to 0.73 eV. The electron injection barrier was estimated by taking into account the gap between highest occupied and lowest unoccupied molecular orbitals (HOMO, LUMO). The procedure followed only suggested the presence of an insignificant barrier in the oligothiophene-TiO2 nanoparticle hybrids. Arylthiol functionalized Cadmium Selenide (ArS-CdSe) is a novel hybrid material which can be used in hetero-junction solar cells. The ArSH ligands are bonded on the surface of the CdSe nanoparticles covalently through sulfur atoms serving as anchors. The internal interface in the ArS-CdSe hybrids between the organic constituent and the inorganic constituent was studied by the same characterization protocol developed in this dissertation. Furthermore, a physisorbed interface between the ArSH ligands and the CdSe nanoparticles was created through multi-step in-vacuum deposition procedure. The electrospray deposition technique enabled the formation of a well-defined physisorbed interface which was characterized by LIXPS, UPS and XPS for each deposition step. Accordingly, the orbital alignment at the physisorbed interface was determined. Based on the results obtained, detailed orbital alignments at the ArSH/CdSe physisorbed interface and the internal interface in the ArS-CdSe hybrid materials were delineated and discussed. The hole injection and electron injection barrier at the physisorbed ArSH/CdSe interface are 0.7 eV and 1.0 eV respectively. An interface dipole of 0.4 eV was observed at the interface. In the ArS-CdSe hybrid materials, the electronic system of the ArSH component shifts down due to the charge transfer induced by the covalent hybridization. The hybridization also shifts the electronic system of the CdSe constituent to a lower energy level due to saturation of the unoccupied bonds of the Cd atoms on the surface. The hole injection barrier and electron injection barrier were determined to be 0.5 eV and 1.2 eV respectively. A small interface dipole (0.2 eV) was observed at the internal interface as a result of the presence of covalent bonds.
563

INTEGRIN α5β1 AS A NOVEL TARGET WITH THE SMALL PEPTIDE, ATN-161, IN THE TREATMENT OF ISCHEMIC STROKE

Edwards, Danielle Nichele 01 January 2019 (has links)
Stroke is the 5th leading cause of death and the leading cause of disability in the United States, but there are only two available therapies, tissue plasminogen activator and endovascular thrombectomy. As both therapies focus on removal of the clot, the subsequent pathologic processes, i.e. inflammation, cerebrovascular breakdown, ATP depletion, etc. are left untreated, contributing to worsened patient outcome. Many clinical trials have unsuccessfully attempted to address these mechanisms. The blood-brain barrier (BBB), a system of non-fenestrated endothelial cells, extracellular matrix, and astrocytic endfeet, is significantly impacted after ischemic stroke in its role of preventing the free movement of proteins from the blood into the brain. In fact, BBB dysfunction is viewed as one of the major facilitators of damage following ischemic stroke, leading to increased infarct volumes and worsened patient outcomes. Interestingly, a family of endothelial integrins, the b1 integrins, have been shown to regulate tight junction proteins preventing the free movement of molecules. When expression of the tight junctions are decreased, this results in increased BBB permeability. To test this concept, our laboratory has previously shown the knockout of the particular β1 integrin, α5β1, is neuroprotective following ischemic stroke through BBB stabilization. To determine if therapeutically targeting integrin a5b1 was feasible, we first determined if brain integrin a5b1 expression increases after experimental mouse ischemic stroke model, specifically tandem/transient common carotid artery/middle cerebral artery occlusion. We found that integrin a5b1 does increase acutely, by post-stroke day (PSD)2, and continued in an exponential fashion through PSD4. Next, we determined if integrin a5b1 was therapeutically accessible by systemic treatment (i.e. intraperitoneal or intravenous) by being located on the inside (luminal surface) of vasculature. We found that location of integrin a5b1 was dependent on the area relative to the stroke injury. The core, or area of direct impact, demonstrated expression of integrin a5b1 on the outside vasculature (abluminal surface), while per-infarct expression was localized to the lumen. Lastly, to determine the activity of integrin a5b1 following ischemic stroke, we showed that the potential ligands (binding partners), plasma fibronectin, fibrinogen, and amyloid-b, do not bind integrin a5b1 after ischemic stroke. Next, we determined the therapeutic potential of targeting integrin a5b1 with the small peptide, ATN-161. ATN-161 has undergone clinical trials in solid tumors, with limited side effects reported. First, we determined that intraperitoneal (IP) injection of ATN-161 was safe after ischemic stroke, showing no changes in heart rate, pulse distention (blood pressure), or body temperature. Next, we found that IP administration of ATN-161 after experimental ischemic stroke reduced infarct volumes, edema, and functional deficit. Furthermore, these results were due to reduction of BBB permeability and anti-inflammatory effects. Interestingly, ATN-161 reduced cytokine production, prevented leukocyte infiltration, and leukocyte recruitment. Collectively, these results suggest that targeting integrin a5b1 with ATN-161 is 1) feasible, 2) safe and 3) effective, suggesting that ATN-161 may be a novel therapeutic treatment for ischemic stroke.
564

Hydrodynamic Controls on the Morphodynamic Evolution of Subaqueous Landforms

Nelson, Timothy L 20 December 2017 (has links)
The southern Chandeleur Islands are an ideal setting to study shoal evolution given their history of submergence and re-emergence. Here, numerical models shed light on the attendant processes contributing to shoal recovery/reemergence following a destructive storm event. Simulations of a synthetic winter storm along a cross-shore profile using Xbeach shows that convergence of wave-induced sediment transport associated with repeated passage of cold-fronts initiates aggradation, but does not lead to reemergence. A Delft3d model of the entire island chain shows that as these landforms aggrade alongshore processes driven by incident wave refraction on the shoal platform, backbarrier circulation and resulting transport become increasingly important for continued aggradation and eventual emergence. Aggradation magnitudes are a function of depth ranging from 2 – 10 mm per event (onset to recovery to near mean sea level). In the absence of big storms, this modest aggradation can be more than one meter in a few years.
565

Geomorphic and temporal evolution of a Mississippi delta flanking barrier island: Grand Isle, LA

Torres, Julie A 23 May 2019 (has links)
Optically stimulated luminescence (OSL) dating beach ridge sediments is one method for resolving barrier island growth at intermediate scales (decades-centuries), information that is lacking for Louisiana. This research combines OSL, GPR, aerial imagery, and cores to document temporal and spatial evolution of a Louisiana barrier island. Grand Isle is composed of beach ridges organized in distinct, unconformable sets that began forming 0.75 ka until 0.575 ka when deposition ceased, the ridges were partially eroded, and deposition resumed in a more eastward direction. The central ridges formed between 370±30 and 170±10 years ago at a rate of one ridge every 11.6 years with sand from the eroding Caminada headland that, with flanking barriers, forms the Bayou Lafourche transgressive depositional system. Grand Isle’s lithosome (92,600,000 cubic meters) requires an annual longshore transport of 128,625 cubic meters. The lithosome thickness (10 meters) and steady sediment supply stabilize the island relative to other Louisiana barriers.
566

The role of vegetation-topographic interactions in a barrier island system: island migration in a changing climate

Nettleton, Benjamin 01 January 2018 (has links)
Islands have been characterized based on vegetation and topography as exhibiting different disturbance regimes - reinforcing or resisting. This study had two objectives: quantify barrier island upland migration and vegetation cover change over 32 years (1984-2016), and assess tolerance of two prevalent dune grass species, A. breviligulata, and S. patens to sand burial. Using Landsat imagery from the Virginia Coast Reserve, islands were categorized within the disturbance resistance/reinforcing framework based on dune elevation. Resistant areas were associated with woody cover and low marsh to upland migration while reinforcing areas had low vegetation cover and high rates of migration. System-wide, migration rates increased over time and large losses of upland and marsh, paired with expansions of woody cover occurred. In the field, each grass species was subject to repeated burials. S. patens was able to maintain biomass and height in high rates of burial, whereas A. breviligulata did not survive.
567

Effects of HIV-1 Tat and drugs of abuse on antiretroviral penetration inside different CNS cell types

Patel, Sulay H 01 January 2018 (has links)
Human immunodeficiency (HIV) infection can result in neurocognitive deficits in about one-half of infected individuals. Despite excellent systemic effectiveness, restricted antiretroviral penetration across the blood-brain barrier (BBB) is a major limitation in fighting HIV infection within the central nervous system (CNS). Drug abuse exacerbates cognitive impairment and pathologic CNS changes in HIV-infected individuals. This work investigates the effects of the HIV-1 protein, Tat, and drugs of abuse on factors affecting drug penetration into the brain. Firstly, an in vitro model of the blood-brain barrier was built to study effects of HIV-1 Tat and methamphetamine (Meth) on integrity and function of the BBB, in turn how HIV-1 Tat and meth will affect antiretroviral penetration into the brain. We found that co-exposure HIV-1 Tat and Meth results in inhibition or impairment of P-glycoprotein activity at the BBB. Also, simultaneous inhibition of P-glycoprotein (P-gp) and Multidrug Resistant Protein -1 (MRP-1), by verapamil and MK-571 causes an increase in accumulation of atazanavir inside the primary human brain endothelial cells. Secondly, we developed and validated the method for simultaneous determination of tenofovir, emtricitabine, and dolutegravir in cell extracts of CNS cells. This method was used to study how HIV-1 Tat and/or morphine affects antiretroviral penetration in CNS cells like human brain microvascular endothelial cells, human astrocytes, human microglia, and human pericytes. We found that in untreated cells, accumulation of antiretroviral drugs was higher in hCMEC/D3 cells compared to other CNS cell types. Also, HIV-1 Tat and/or morphine had no significant effect on antiretroviral penetration amongst these cell types. Overall, the rank order of intracellular accumulation observed in treated and untreated cells was dolutegravir > emtricitabine > tenofovir.
568

Metallic systems at the nano and micro scale: Bimetallic nanoparticles as catalysts and MCrAlY bond coats in thermal barrier coatings

Kane, Kenneth 01 January 2019 (has links)
The dissertation is split into two parts. The first part will be focused on changes in material properties found at the nanoscale, as miscibility and electronic structure can change significantly with size. The formation of classically-immiscible bimetallic nanoparticles (BNPs) becomes favorable at the nanoscale and novel catalytic properties can emerge from the bimetallic alloying. The formation of alloyed and non-alloyed BNPs is achieved through pulse laser ablation (PLA) and a significant increase in catalytic activity is observed for both. Recently discovered, the increased activity in the non-alloyed BNPs, deemed multicomponent photocatalysis, is examined and the proposed mechanism discussed. The second part of the talk will focus on thermal barrier coatings (TBCs), which are advanced, multi-layered coatings used to protect materials in high temperature environments. MCrAlY (M=Ni, Co) bond coats deposited via atmospheric plasma spray (APS) are intrinsically rough and initially the roughness provides a high surface area platform for the mechanical interlocking of the yttria stabilized zirconia (YSZ) top coat, which provides the bulk of the thermal insulation. After high temperature exposure, a protective oxide scale forms at the top coat/bond coat interface however the convex asperities of the bond coat can grow non-α-Al2O3 type oxides that can be detrimental for coating lifetime. A surface modification technique that removes the asperities while leaving intact the concavities is used to examine the role that roughness distribution has on 1100°C APS coating lifetime. Lastly, recent work validating a modelling strategy for evaluating 900°C TBC lifetimes, which can typically surpass 25 kh, is presented. Differences in coating-substrate interdiffusion behavior over 5-20 kh of 900°C exposure are discussed and reproduced with Thermo- Calc/DICTRA for three superalloys (1483, 247, X4) deposited with high velocity oxy fuel (HVOF) NiCoCrAlY coatings.
569

Facilitative and competitive tradeoffs between Morella cerifera seedlings and coastal grasses

Sinclair, Michael N 01 January 2019 (has links)
Morella cerifera is a rapidly expanding native shrub on the Virginia barrier islands which displaces other native coastal species and may interrupt normal sediment dynamics. Barrier islands are considered stressful environments with low nutrients, high solar load, and frequent drought and salt exposure; facilitation often dominates in stressful environments according to the Stress Gradient Hypothesis. The objective of this project was to understand the importance of species interactions with grasses on the growth and physiology of M. cerifera at the seedling life stage through both field and lab experiments. Grasses provided ~1.3°C insulation to shrubs during winter freeze events and a freezing threshold for M. cerifera seedlings was experimentally found between -6°C and -11°C. Seedlings competed for light with grasses during warm months and grew more where grasses were clipped, revealing a tradeoff between winter insulation and summer light competition. M. cerifera shows evidence of ecosystem engineering at the seedling stage by significantly reducing summer maximum temperatures. This enables rapid expansion of M. cerifera across the landscape. As M. cerifera expands, island migration is altered, leading to decreased island stability and increased erosion. Although seedlings are small and relatively vulnerable, this life stage appears to have significant implications for the ecosystem trajectory and stability of the Virginia barrier islands.
570

Self-Efficacy and Self-Management Assessments on Hispanic Patients with Diabetes

DeJesus, Yesenia 01 January 2016 (has links)
Hispanics are at increased risk for diabetes and are 40% more likely to die from the condition than are non-Hispanic Caucasians. The purpose of this project was to determine the effects of diabetes education conducted in Spanish by bilingual staff on the self-management and self-efficacy of a sample of 50 volunteer adult Hispanic clinic patients with diabetes. The education intervention incorporated the American Diabetes Association's Diabetes Self-Management Education program materials. Bandura's self-efficacy theory was selected as the theoretical support for the project that relied on self-management education of the patients to improve their self-efficacy to undertake the interventions necessary to manage their disease. The Diabetes Self-Management Questionnaire measured patient understanding and self-care management of diabetes before and after the education intervention, and the Diabetes Self-Efficacy Scale measured the self-efficacy of the patients before and after the intervention. Paired sample t tests were calculated to compare the pretest to posttest scores on the full questionnaire and subscales. The full scale and the glucose monitoring control and physical activity subscales showed statistically significant improvement pretest to posttest. An increase in the pretest to posttest Diabetes Self-Efficacy Scale scores was not significant. Results indicated that the diabetes education was an effective way to improve self-reported daily blood glucose monitoring and physical activity. The project may result in positive social change from the better self-management of some diabetes control skills among Hispanic adult patients when education is delivered in Spanish.

Page generated in 0.0859 seconds