811 |
Corrosion protection of powder coatings : Testing the barrier properties and adhesion of powder coating on aluminum for predicting corrosion protection by Electrochemical Impedance SpectroscopyPersson, Björn, Svensk, johanna January 2017 (has links)
The choice of corrosion protection system depends on the environment and needed lifetime for the product. The right corrosion protection should be selected in a sustainable point of view, since a well-selected coating system can reduce the environmental and economical impact, by using less and better material. The systems used for classifying corrosion protection often give a passed/not passed result for the number of years it is expected to last in a specific corrosive environment. In the last decades, Electrochemical Impedance Spectroscopy (EIS) has become a popular method for evaluating corrosion protection for organic coatings. EIS can collect quantitative data by monitoring the coatings electrochemical behavior over time, which can be used for optimizing the coating system. The purpose of this thesis was to try to predict how different combinations of coating layers and substrates will perform as a corrosion protection, which could provide information that can optimize the coating process. In this thesis, EIS has been used as a test method to evaluate organic coating systems for corrosion protection, by looking at barrier properties and adhesion for powder coatings on aluminum substrates. The main part of the coatings were applied in the coating plant at Fagerhult AB, but an external supplier has been used as a reference. The powders used in the coating process were based on polyester resins and the substrates were different aluminum alloys. The EIS measurements were performed in the chemistry lab at the School of Engineering at Jönköping University and depending on the sample setup was each sample evaluated for two or four weeks of testing. Two groups of samples had intact coatings and a third group had samples with an applied defect in the coating. The analysis of sample setups with intact coatings showed that the topcoat absorbed water faster than the primer. The samples showed no significant degradation in corrosion protection for the evaluated period and could thereby not provide enough information to be able to conclude which setup give the best corrosion protection over time. The samples with a defect in the coating indicated that two of the substrates provided similar adhesion in the coating-substrate interface. The coating from the external supplier was also included in the test and it showed the best adhesion of the tested samples. The main conclusion is that the coating system used at Fagerhult AB provides a very good corrosion protection. Longer testing time with EIS measurements on intact coatings is needed to be able to rank the different sample setups by failure of corrosion protection.
|
812 |
STABILITY ANALYSIS OF A LONGWALL MINING IN NARVA OIL SHALE MINEOisalu, Ott, Lõhmuste, Taavi January 2017 (has links)
Oil shale industry in Estonia is looking at other mining technologies as alternative to strip mining and room and pillar mining methods. One such alternative to the room and pillar method is the punch-longwall mining method. Enefit Kaevandused AS, one of the major oil shale companies in Estonia, plans to employ this technology in exploiting some of its resources in the near future. This thesis examines the different stability problems related to the planned punch-longwall mining project in Narva oil shale mine. Determining optimal chain pillar dimensions and stability of the punch-longwall highwall slope are the main objectives of this project. Rock mechanical analyses have been done and recommendations are made based on the rock mechanical aspect of the mining process. Taavi Lõhmuste is responsible for the chain pillar stability analysis and Ott Oisalu for the punch-longwall highwall slope stability analysis. It is essential to understand the geology of a certain area in order to make accurate stability assessments. Because of the previously stated requirements, the geology of Estonian oil shale deposit is examined in the first part of the thesis in order to determine the geological and rock mechanical conditions to set the foundation for further analyses. In conclusion, for the part of the highwall slope, a properly designed barrier pillar plays a key role in the stability of the slope. After reviewing and analyzing the results of both highwall slope numerical models, it can be stated that the minimum length for the barrier pillar that still will yield in stable highwall slope is 65 meters. For the part of the chain pillars, in conclusion, it can be determined that optimal chain pillar dimensions that should be suitable, from the stability standpoint, are 6x6 meters for 3-entry system and 7x7 meters for 2-entry system (length x width).
|
813 |
Modulateurs moléculaires de l'absorption cutanée : analyse de la structure-activité de tensioactifs et caractérisation du transport cutané / Chemical skin absorption modulators : surfactant structure-activity and cutaneous absorption characterizationRoussel, Laurène 07 July 2015 (has links)
Des formes galéniques spécialement étudiées permettent l'administration topique d'un médicament ou d'un actif cosmétique afin d'obtenir un effet local ou une action systémique. Les excipients présents dans la formulation, comme les tensioactifs dans les solutions micellaires, émulsions, microémulsions, nanoémulsions, nanostructures, peuvent être alors des éléments influençant la pénétration et la perméation de l'actif. L'étude de leurs effets sur la barrière cutanée peut être utile afin de choisir au mieux les différents composés de la formulation. L'objectif de cette thèse a été d'étudier l'effet de différents tensioactifs (alkylpolyglucosides, lipoaminoacides, alcools gras éthoxylés et copolymères à blocs de type Poloxamer) en solution aqueuse sur la structure et la fonction barrière de la peau, grâce à des techniques d'infrarouge à transformée de Fourier, de calorimétrie différentielle à balayage, de mesure de la perte insensible en eau et de microscopie électronique à transmission. L'objectif spécifique de ce travail a porté sur l'étude de l'absorption cutanée ex vivo de trois principes actifs de lipophilie différente (caféine, kétoprofène et progestérone) à travers un modèle de peau animale co-traitée par différents tensioactifs. Plus spécifiquement, la pénétration de la progestérone au sein des différentes couches de la peau a été étudiée compte tenu de sa lipophilie élevée limitant son passage dans les couches cutanées plus hydrophiles. A l'issue de ces travaux, nous montrons que les tensioactifs peuvent exercer non seulement des effets sur l'organisation lamellaire des lipides intercornéocytaires mais aussi sur les cornéocytes du stratum corneum (SC). Par ailleurs, ces différents résultats ont permis de définir les structures chimiques des tensioactifs favorisant l'absorption cutanée de principes actifs. Les tensioactifs anioniques comportant une chaîne aliphatique de 12 carbones augmentent sélectivement la perméation cutanée de principes actifs hydrophiles et la pénétration de principes actifs lipophiles dans les tissus cutanés. La pénétration cutanée de principes actifs est étroitement corrélée à la taille des micelles de tensioactif susceptible de s'incorporer dans les espaces intercornéocytaires du SC. Enfin, la valeur de concentration micellaire critique est une propriété physico-chimique permettant d'expliquer en partie l'effet des tensioactifs sur leur perméabilité cutanée / Dosage forms specially designed allow the topical administration of drugs or cosmetic active ingredients to obtain a local effect or a systemic action. Excipients, such as surfactants in micellar solutions, emulsions, microemulsions, nanoemulsions, nanostructures can influence the drug penetration and permeation. Understanding their effects on skin barrier is helpful in the choice of surfactant. The aim of this thesis was to study the effect of different surfactants (alkylpolyglucosides, lipoaminoacids, ethoxylated fatty alcohol and copolymers blocks) in aqueous solution on the skin barrier structure and function, using techniques like infrared Fourier transform, differential scanning calorimetry, transepidermal water loss measurement and transmission electron microscopy. The specific aim of this work focused on the ex vivo cutaneous absorption of three drugs showing different lipophilicity (caffeine, ketoprofen and progesterone) through animal skin co-treated by different surfactants. More specifically, the penetration of progesterone in the different skin layers has been studied due to its high lipophilicity limiting its permeation in the most hydrophilic layers (viable epidermis and dermis). At the outset, we showed that surfactants could provide not only an effect on lamellar organization of intercorneocyte lipids but also on the corneocytes into the stratum corneum (SC). Moreover, these different results allowed to define surfactant chemical structure increasing drug cutaneous absorption. Anionic surfactant with a C12 chain length increased significantly cutaneous permeation of hydrophilic drug and penetration of lipophilic drug into cutaneous tissue. Drug penetration is correlated with micelle size allowed its incorporation into SC intercorneocyte spaces. Finally, the value of its critical micellar concentration is a physico-chemical properties allowed to partially explain the surfactant effect on their cutaneous permeability
|
814 |
Barriers to school attendance among children with disabilities in RwandaSagahutu, Jean Baptiste January 2008 (has links)
Magister Scientiae (Physiotherapy) - MSc(Physio) / The number of children with disabilities under the age of 18 years around the world varies from 120 to 150 million. In many countries, throughout the world, the majority of children with disabilities either do not receive any form of education or, if they receive any, it is often inappropriate. UNESCO estimates that more than 90% of children with disabilities in developing countries do not attend schools. Rwanda has recently started inclusive education in a number of schools around the country for ensuring that children with disabilities have access to education. Despite this, in Rwanda, many children with disabilities do not attend school and this number is not known. This study aimed to identify the barriers to school attendance by children with disabilities in Rwanda. / South Africa
|
815 |
The effects of Ethanol and Aspalathus linearis on immortalized mouse brain endothelial cells (bEnd5)Thomas, Kelly Angelique January 2015 (has links)
Magister Scientiae (Medical Bioscience) - MSc(MBS) / The blood brain barrier (BBB) is a signaling interface between the blood and the central nervous system (CNS), which prohibits the entry of harmful blood-borne substances into the brain micro-environment, thus maintaining brain homeostasis. The crucial role of the BBB is protecting the CNS, which may adversely be affected by alcohol. The central component of the BBB, endothelial cells (ECs), regulates BBB transport by regulating the permeability both transcellularly and through their paracellular junctions, by structures called tight junctions (TJs) that are composed of proteins. The aim of this study was to investigate the in vitro effects of ethanol (EtOH) and fermented rooibos (Rf) on a monolayer of bEnd5 mouse brain ECs, by determining the effects of EtOH and Rf on bEnd5 (i) cell viability (ii) cell proliferation (iii) rate of cell division (iv) cell toxicity (v) claudin-5 transcription (vi) permeability across a monolayer of bEnd5 ECs and (vii) morphology, for a selected experimental timeline of 24, 48, 72, and 96hrs. We then investigated if the simultaneous exposure of Rf and EtOH could reverse or alleviate the EtOHinduced effects on the bEnd5 ECs. EtOH metabolism induces oxidative stress and results in a range of adverse physiological effects. Aspathalus linearis (rooibos) contains many phenolic compounds, of which the main antioxidant activity is attributed to aspalathin. Our underlining hypothesis is that the antioxidants in an aqueous rooibos extract may therefore protect against the potential oxidant damaging effects of alcohol on the BBB. Cells were exposed for 24hrs to selected concentrations of EtOH (25mM and 100mM), a concentration of Rf containing equivalent of 1.9nM aspalathin, and the combinations of EtOH and Rf. Cell viability and cell toxicity was determined, while cell proliferation and rate of cell division was estimated using the trypan blue exclusion assay. Real time quantitative PCR was implemented to quantify claudin-5 transcription, normalized against housekeeping genes, GAPDH and HPRT. Transepithelial electrical resistance (TEER) was measured using the Ohm Millicell-electrical resistance system, while bEnd5 monolayer morphology was analysed using the Zeiss scanning electron microscope. Both concentrations of EtOH led to an overall decrease in cell viability, and a decreased number of live cells across 72hrs. Consistent with this, EtOH resulted in increased cell toxicity across the 96hr experimental timeframe and a diminished rate of cell division. The transcription of claudin-5 in bEnd5 ECs exposed to 25mM and 100mM EtOH varied dramatically across the 96hr timeframe. While 25mM EtOH resulted in an overall decrease in TEER, cells exposed to 100mM EtOH only decreased TEER between 48 and 96hrs. Morphologically, both concentrations of EtOH led to compromised paracellular spaces as endorsed by high definition SEM analysis. The administration of Rf on its own resulted in an initial decrease in viability, followed by recovery between 72 and 96hrs. Exposure to Rf diminished live cell numbers at 72 and 96hrs, accompanied by a compromised rate of cell division and an overall increase in cell toxicity. In addition, Rf down-regulated claudin-5 transcription across the course of the experiment, particularly between 24 and 48hrs. In alignment with this, Rf also led to an increase in BBB permeability from 24 to 96hrs. However, SEM studies were not able to discriminate any differences between control and Rf treated cells. Our study showed that the BBB could be protected against the adverse effects of EtOH, and this at the plasma concentration induced by 500ml’s of Rooibos tea. The simultaneous exposure of Rf and EtOH was able to negate the effects of EtOH on cell viability, cell proliferation, and cell toxicity but exacerbated the effects of EtOH on claudin-5 transcription and paracellular permeability. Morphologically, co-exposure with Rf only reversed the effects of 25mM EtOH while exacerbating the effects of 100mM EtOH at 96hrs. In conclusion, EtOH was shown to be detrimental to the integrity of bEnd5 ECs, and the addition of a minuscule quantity of t h e Rf extract was able to partially alleviate excess ROS-induced effects. / National Research Foundation (NRF)
|
816 |
Utilisation de l'ensemble méthodologique MADS/MOSAR pour l'évaluation des systèmes de barrières de sécurité : application au secteur minier colombien / Evaluation of safety barriers through the MADS/MOSAR methodology : case study of the Colombian miningMuñoz Giraldo, Felipe 07 September 2007 (has links)
Dans ce travail, nous expliquons l'application de la méthodologie MADS/MOSAR sur le secteur de extraction minier colombien et nous analysons le lien existant entre la législation colombienne et trois scénarios d'accident (explosion, effondrement post-opération et les maladies pulmonaires). L'ensemble réglementaire d’un pays peut être appréhendé comme des barrières de sécurité et joue un rôle important dans la gestion de la sécurité. La définition, la classification et l'exécution des barrières réglementaires, permet à l’administrateur des risques technologiques d'effectuer une réduction du risque afin d'augmenter l'acceptabilité dans le contexte régional. Il permet d'identifier les flux de dangers pour un groupe d'événements, de définir l'existence ou l’absence de barrières réglementaires et de produire un panorama global positionnant les différents instruments existants et autorisant de futures opportunités de gestion. Les résultats de notre analyse montrent un point de vue qui peut être très utile pour qu'un gouvernement local ou un système national développe et/ou évalue son propre ensemble réglementaire pour la gestion des risques / N this work, we explain the application of the MADS/MOSAR methodology in the Colombian mining sector and analyze the current legislation linked with three scenarios (explosion, post-operation collapsing and pulmonary diseases). The entire normative body of a country can be conceived as safety barriers and it plays an important role in industrial safety management. The definition, classification and performance of the normative barriers, allows the management of technological risks to perform a risk reduction in order to enhance the acceptability in the regional context. It permits to identify the flux of danger for a group of events, to define the existence of normative barriers and to generate a global panorama over the position of the different instruments that already exist allowing future management opportunities. The results of our analysis show a point of view that can be very useful for a local government or a whole national system to develop and/or evaluate his legislative instruments of risk management
|
817 |
A steady-state model for hexavalent chromium reduction in simulated biological reactive barrier : microcosm analysisMtimunye, Phalazane Johanna 22 September 2011 (has links)
Biological remediation of Cr(VI) contaminated soil and groundwater is an emerging field. In this study, the in situ bioremediation technology for treating Cr(VI) contaminated groundwater aquifers was evaluated using a laboratory microcosm system. The study was conducted using columns with five equally spaced intermediate sampling ports along the length to facilitate finite difference modelling of the Cr(VI) concentration profile within the column. Cr(VI) concentration was continuously measured in the influent, in five equally spaced intermediate ports within the column and in the effluent port. The change or the shift in microbial community within the inoculated column was also monitored due to exposure to toxic conditions after seven weeks of operation using the 16S rRNA genotype fingerprinting method. The effect of introducing a natural carbon source (sawdust) in inoculated columns in comparison with the performance of sterile controls under various loading conditions was also evaluated. Near complete Cr(VI) removal was achieved in an inoculated carbon source reactor, whereas only 69.5% of Cr(VI) removal was achieved in an inoculated column without an added carbon source after 4 days of operation at 20 mg/L. In a sterile control reactor less than 2% of Cr(VI) was removed after 4 days of operation at 20 mg/L. Experimental cores demonstrated a successful Cr(VI) reduction process in the simulated microbial barrier system that was evaluated internally. The model that simulates Cr(VI) removal and transport in the subsoil environment was developed. The Cr(VI) mass balance model across the reactor that accounts for the flow characteristics and biological removal mechanism successfully captured the trends of Cr(VI) response profiles under quasi-steady state conditions for different loading conditions. This study demonstrate the potential of applying effective Cr(VI) reducers in the reactive barrier systems to contain or attenuate the spread of Cr(VI) contaminant in groundwater aquifer systems. The finite difference model developed in this study to evaluate the behaviour of Cr(VI) in the reactor could contribute towards improved designs of future in situ bioremediation systems that can be implemented for remediation of Cr(VI) on site. / Dissertation (MSc)--University of Pretoria, 2011. / Chemical Engineering / unrestricted
|
818 |
Postmodern Epistemology and the Christian Apologetics of C S LewisWilson, Donald Neil 04 October 2006 (has links)
Epistemology in its contemporary post-modern ethos is generally believed to be inseparably hinged upon language. This of course ensures a major paradigm shift in the disciplined human conceptions of reality. It has been stated and is widely acknowledged that the Kantian Noumenal barrier has, in this recent shift, been proved to be looming far closer than it was ever previously considered. This new barrier to the world of ‘objective absolutes’ comprises a barrier of semantics and syntax, and calls for a radical restructuring of all the human sciences. There is surely no discipline in the humanities that can claim immunity to this colossal shift in epistemology, and theology (particularly of the Evangelical variety) is no exception to the rule. The impact of post-modern epistemological assumption upon contemporary Evangelicalism presents to those who adhere to this school’s position, a profound challenge. Conservative Christians, who hold to the propositional universality and the objectivity of biblical truth, find in the post-modern ethos little sympathy and no rational justification granted for their ‘metaphysical objectivity’. A major challenge therefore to Evangelical Christianity at the present time is this: Is there, in the light of the challenge of post-modern epistemology, any reasonable justification for continuing to adhere to the evangelical claim that God has spoken in unchanging propositional terms that are universally valid and binding? It would seem that in this regard many evangelicals are feeling pressured. Evidence of the pressure of this challenge can readily be found either in the growing contemporary evangelical tendency towards advocating a more cooperative attitude to the post-modern ethos, or in the reactionary theology of schools of thought like the Spiritual Warfare Movement. The writings of Clive Staples Lewis (1898 – 1963) have been proven effective in the countering of negative challenges to Christian faith for the past sixty years. Lewis, as an apologist, in the opinion of many intellectual searchers, positively and convincingly countered modernistic objections to faith in his own time. Modernistic assumptions prevailed in the Western world in Lewis’ day that tended to discredit a rational belief in the supernatural. Lewis was widely held to be an effective apostle to counter this modernistic scepticism. It is the conviction of the present writer that C. S. Lewis apologetics can be just as effectively utilised today in addressing post-modern challenges, as it was fifty years ago used to answer the questions raised by modernism. Lewis in all of his Christian writings, reveals an underlying epistemology that I believe (because it is based firmly upon Christian orthodoxy), has stood the test of time. The apologetics of C. S. Lewis may serve to answer post-modern challenges just as rationally as it did modernism. In this thesis, Lewis’ underlying epistemology will be examined. This will comprise the first part of my work. The second part of the thesis deals with the post-modern epistemological challenge to Evangelicalism as a world-view. The final part of this thesis consists of a dialogue between the most common post-modern challenges to evangelical thinking, and rationally compelling answers thereto that are found in Lewis’ writings. / Thesis (PhD)--University of Pretoria, 2007. / Dogmatics and Christian Ethics / Unrestricted
|
819 |
The effect of sintering and CMAS on the stability of plasma-sprayed zirconia thermal barrier coatingsShinozaki, Maya January 2013 (has links)
State of the art thermal barrier coatings (TBCs) for gas turbine applications comprise (7 wt.%) yttria partially stabilized zirconia (7YSZ). 7YSZ offers a range of attractive functional properties – low thermal conductivity, high thermal expansion coefficient and high in-plane strain tolerance. However, as turbine entry temperatures are raised, the performance of 7YSZ coatings will be increasingly affected by sintering and environmental contamination, by calcia-magnesia-alumina-silica (CMAS) deposits. The effect of sintering-induced stiffening on the driving force for spallation of plasma-sprayed (PS) TBCs was investigated. Spallation lifetimes of TBC specimens sprayed onto alumina substrates were measured. A simple fracture mechanics approach was employed in order to deduce a value for the strain energy release rate. The critical strain energy release rate was found to be constant, and if this value had been known beforehand, then the rationale presented here could be used for prediction of coating lifetime. The effect of vermiculite (VM) and volcanic ash (VA) contamination on the sintering-induced spallation lifetime of PS TBCs was also investigated. The presence of both VM and VA was found to accelerate the rise in their Young’s modulus with sintering. Spallation results show that coating lifetime may be significantly reduced, even at relative low addition levels, due to the loss of strain tolerance caused by the penetration of glassy deposits. This result gives a clear insight into the role CMAS plays in destabilizing TBCs. Finally, the adhesion characteristics of ingested volcanic ash were studied using a small jet engine. The effects of engine speed and particle size were investigated. Deposition on turbine surfaces was assessed using a borescope. Deposition mainly occurred on the nozzle guide vane and blade platform. A numerical model was used to predict particle acceleration and heating in flight. It was observed that larger particles are more likely to adhere because they have greater inertia, and thus are more likely to impact surfaces. The temperature of the larger particles at the end of its flight was predicted to be below its softening point. However, since the component surface temperatures are expected to be hotter, adhesion of such particles is probable, by softening/melting straight after impact.
|
820 |
Safety-critical Geometric Control Design with Application to Aerial TransportationWu, Guofan 01 December 2017 (has links)
Safety constraints are ubiquitous in many robotic applications. For instance, aerial robots such as quadrotors or hexcoptors need to realize fast collision-free flight, and bipedal robots have to choose their discrete footholds properly to gain the desired friction and pressure contact forces. In this thesis, we address the safety critical control problem for fully-actuated and under-actuated mechanical systems. Since many mechanical systems evolve on nonlinear manifolds, we extend the concept of Control Barrier Function to a new concept called geometric Control Barrier Function which is specifically designed to handle safety constraints on manifolds. This type of Control Barrier Function stems from geometric control techniques and has a coordinate free and compact representation. In a similar fashion, we also extend the concept of Control Lyapunov Function to the concept of geometric Control Lyapunov Function to realize tracking on the manifolds. Based on these new geometric versions of CLF and CBF, we propose a general control design method for fully-actuated systems with both state and input constraints. In this CBF-CLF-QP control design, the control input is computed based on a state-dependent Quadratic Programming (QP) where the safety constraints are strictly enforced using geometric CBF but the tracking constraint is imposed through a type of relaxation. Through this type of relaxation, the controller could still keep the system state safe even in the cases when the reference is unsafe during some time period. For a single quadrotor, we propose the concept of augmented Control Barrier Function specifically to let it avoid external obstacles. Using this augmented CBF, we could still utilize the idea of CBF-CLF-QP controller in a sequential QP control design framework to let this quadrotor remain safe during the flight. In meantime, we also apply the geometric control techniques to the aerial transportation problem where a payload is carried by multiple quadrotors through cable suspension. This type of transportation method allows multiple quadrotors to share the payload weight, but introduces internal safety constraints at the same time. By employing both linear and nonlinear techniques, we are able to carry the payload pose to follow a pre-defined reference trajectory.
|
Page generated in 0.1495 seconds