• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 9
  • 4
  • 2
  • Tagged with
  • 54
  • 54
  • 16
  • 11
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Gut Health Benefits of Natural and Alkali-Processed Cocoa (Theobroma cacao) with and without Inulin

Essenmacher, Lauren Alexis 22 June 2020 (has links)
Chronic conditions such as obesity, inflammatory bowel disease (IBD), and colitis are associated with gastrointestinal (GI) inflammation and compromised GI barrier integrity. Cocoa may be a potential dietary strategy to mitigate gut-related conditions and been shown to elicit anti-inflammatory, antioxidant, and prebiotic effects. Alkali treatment of cocoa was once thought to reduce its bioactivity, but new evidence suggests it may enhance cocoa's health properties, through the formation of new, potentially bioactive high molecular weight compounds. Inulin, a fructose-containing plant polymer, exerts prebiotic effects and has also been investigated in the mitigation of IBD. This study aims to 1) investigate effects of alkali processing on gut health related bioactivity and phytochemical composition of cocoa and 2) evaluate potential additive benefits of combining cocoa and inulin. Polyphenolic and flavanol compounds in natural cocoa, alkalized cocoa, and inulin powders were characterized using Folin-Ciocalteu (total polyphenols) and 4-dimethylaminocinnamaldehyde (total flavanols) assays, thiolysis , and HILIC UPLC-MS/MS. Treatments of cocoa and inulin were made in 1:2 cocoa:inulin and 1:4 cocoa:inulin mixtures for both natural and alkalized cocoas. Cocoa mixtures, in addition to both cocoa powders and inulin alone, were subjected to an in-vitro digestion to generate material for an in-vitro fecal fermentation. Samples collected from the fermentation at 0, 6, 12, and 24 hours were analyzed via HPLC-MS for microbial metabolites, applied to HT-29 colon cancer cells to assess anti-inflammatory activity, and applied to a florescence assay measuring PLA2 inhibitory activity. The alkalized cocoa powder was found to have a significantly lower concentration of total polyphenols and total flavanols, as well as a lower mDP, suggesting that alkalization may affect larger procyanidins more than smaller flavanol compounds. Inulin enhanced the inhibition of the PLA2 enzyme and enhanced the IL-8 anti-inflammatory properties of cocoa, although the trends were weak. Overall, we did not see any clear, significant effects of alkalization or the addition of inulin to cocoa's colonic metabolite formation or its gut bioactivity in vitro. However, we have demonstrated that colonic fermentation of cocoa may have a negative effect on its bioactivity in vitro. Future research should further explore flavanol DP and bioactivity, fiber's interaction with polyphenols, colonic metabolism of cocoa, and cocoa's gut health effects in vivo. / Master of Science in Life Sciences / Gut conditions like obesity-associated inflammation and inflammatory bowel disease are highly prevalent, debilitating, and currently have no cure. Cocoa has been investigated as a possible dietary strategy for the mitigation and prevention of chronic inflammatory gut conditions due to its anti-inflammatory and enzyme inhibiting properties. Most attribute these effects of cocoa to its abundance of compounds called polyphenols. It is widely thought that the ability of cocoa to promote health is lost when cocoa beans are processed, because of the loss of polyphenols. Alkalization, or "Dutching", is an optional step in cocoa processing that some manufacturers perform to enhance flavor and color formation. Dutching cocoa can promote the polymerization of many smaller, flavanol, protein, and other compounds into larger, indigestible compounds. These indigestible compounds will not be absorbed in the small intestine and may be broken down in the large intestine by colonic bacteria, forming new metabolites. We obtained cocoa powders, one natural (not alkalized) and one alkalized and compared them in terms of content of polyphenols, bioactivities, and anti-inflammatory abilities. Additionally, we added a known prebiotic, inulin, to our cocoa formulations to determine if there are additive benefits of cocoa and inulin together. Ultimately, we found that alkalized cocoa contained lower concentrations of all polyphenolic compounds, even the larger compounds. Inulin enhanced the inhibition of digestive enzymes and the anti-inflammatory properties of cocoa, though not significantly. Inulin also reduced the pH (i.e. increased the acidity) of a simulated gut environment, which may be beneficial. Alkalization did not significantly affect cocoa's enzyme inhibitory activity or anti-inflammatory activity. Overall, the addition of inulin to cocoa does not seem to be effective in increasing cocoa's ability to treat and prevent gut diseases, but more information is needed.
32

Short-term effects of selected barrier creams on skin barrier function / Amanda Vermaak

Vermaak, Amanda January 2014 (has links)
Background: Barrier creams are applied to the surface of the skin to form a barrier that aims to prevent the penetration of irritants and allergens through the skin surface. Several inconsistencies and controversies exist in literature regarding the effect that barrier creams may have on skin barrier function. Various skin surface parameters are used to evaluate the effect that the barrier creams have on skin barrier function. These parameters include transepidermal water loss (TEWL), skin hydration and skin surface pH. Total skin thickness may be assessed as a variable on its own. Differences may exist in skin surface parameters when comparing African participants with Caucasian participants. Aim: The specific aim of this research was to evaluate the short-term1 effects of selected barrier creams on skin barrier function. Note 1: The words short-term are used in this study as each barrier cream is only tested over a period of 8 hours and not tested over a long term period of months or years. Method: Forty two non-smoking participants were included and tested in this study, of which 21 were African and the rest Caucasian. TEWL, skin hydration and skin surface pH were used to evaluate the differences in the effect of two different barrier creams (Reinol Solvgard and Momar Chex) on skin barrier function. TEWL was measured by making use of a closed chamber Vapometer (Deflin Technology Ltd., Kuopio, Finland), skin hydration using a Corneometer® CM 825 and skin surface pH using a pH meter probe (Courage and Khazaka Electronic Kӧln, Germany). A micro-pipette was used to drip a standard volume of 20 μl of ultrapure water on the skin surface before the researcher placed the pH meter probe onto the skin surface. Total skin thickness was measured by making use of ultrasound (Ultrascan 22 - TBS0061B) (Courage and Khazaka Electronic Kӧln, Germany). Three consecutive measurements were taken on the mid-forearm and the palm of the experimental arm. After baseline values were measured, 5 ml of the selected barrier cream was applied to the experimental arm. The barrier cream (selected for the day) was reapplied after 2, 4 and 6 hours and measurements were taken every 2, 4, 6 and 8 hours. The total skin thickness was measured at time zero and at 8 hours. Results: TEWL: For both barrier creams, statistical significant differences (p ≤ 0.05) were found between TEWL on the palms of African participants and Caucasian participants. Skin hydration: Statistically significant differences (p ≤ 0.05) were obtained with regard to mid-forearm skin hydration when comparing Reinol Solvgard with Momar Chex (this was applicable to both racial groups). A statistically significant difference (p ≤ 0.05) was obtained with regard to mid-forearm skin hydration when comparing African participants with Caucasian participants (this was only applicable to Reinol Solvgard). Statistical significant differences (p ≤ 0.05) were obtained with regard to skin hydration palm when comparing Reinol Solvgard with Momar Chex (this was applicable to both racial groups). Statistically significant differences (p ≤ 0.05) were obtained with regards to skin hydration palm when comparing African participants with Caucasian participants (this was applicable to both barrier creams). Skin surface pH: A statistically significant difference (p ≤ 0.05) was obtained with regard to pH of the mid-forearm when comparing Reinol Solvgard with Momar Chex (this was applicable to only the African participants). A statistical significance (p ≤ 0.05) was obtained with regards to skin surface pH mid-forearm when comparing African participants with Caucasian participants (this was applicable to Momar Chex barrier cream only). A statistically significant difference (p ≤ 0.05) was obtained with regards to the pH of the palm when comparing Reinol Solvgard with Momar Chex (this was only applicable to the African racial group). Conclusion: Using skin surface parameters, it can be concluded that Momar Chex barrier cream elicited more positive effects on skin barrier function than Reinol Solvgard barrier cream. This may be ascribed to the fact that both barrier creams lowered TEWL (positive effect), Reinol Solvgard lowered skin hydration (negative effect) whereas, Momar Chex increased the skin hydration (positive effect) and both barrier creams increased skin surface pH (negative effect). Furthermore, the objectives of this study were reached as (a) short-term effects on skin surface parameters were identified between African versus Caucasian participants, (b) significances were observed between the two barrier creams (Momar Chex and Reinol Solvgard) by making use of skin surface parameters and (c) general increases and or decreases were observed in skin surface parameters over a short term period of 8 hours. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2015
33

Dermal and respiratory exposure to nickel in a packaging section of a base metal refinery / Hendrik Johannes Claassens

Claassens, Hendrik Johannes January 2013 (has links)
Nickel is one of the most commonly known sensitisers and has been classified by the International Agency for Research on Cancer (IARC) as a possible carcinogen to humans (group 2B). Workers at a South African base metal refinery packaging area are potentially exposed to many hazardous chemicals that include nickel. Aims and Objectives: The aim and objectives of this study were to assess dermal and respiratory exposure of workers exposed to nickel in a packaging section at a South African base metal refinery and to assess the change in skin barrier function during a work shift by measuring percentage change in trans epidermal water loss (TEWL), skin hydration and skin surface pH. Skin health was established with a skin questionnaire. Surfaces that workers may come into contact with were also assessed. Method: Respiratory and dermal exposure assessment was done concurrently. Respiratory exposure was assessed and analysed by using the National Institute for Occupational Safety and Health (NIOSH) method 7300. The Institute of Occupational Medicine (IOM) inhalable aerosol sampler was used for personal air sampling. The TEWL index, skin hydration and skin surface pH of the index finger, palm, forearm and forehead were measured before and at the end of the shift with a Derma Measurement Unit, EDS 12 and Skin-pH-Meter® pH 905. These measurements were reported as percentage change in skin barrier function during the shift. Dermal exposure samples were collected with Ghostwipes™ from the index finger and palm of the dominant hand before, during and at the end of the shift, while samples from the forearm and forehead were only collected before and after the shift. Surface sampling was collected and all wipes were analysed for nickel according the NIOSH method 9102, using inductively coupled plasma-atomic emission spectrometry. Results: Respiratory exposure for the whole group of workers in a packaging section was well below the eight hour Time Weighted Average (TWA) respiratory Occupational Exposure Limit (OEL) of 0.5 mg m-3 for nickel. Dermal nickel loading was detected for all the job categories on all the anatomical areas even before the shift had commenced. During the shift more nickel was detected on the index finger and palm of the hand. Levels on the forearm and forehead were much lower in comparison with the index finger and the palm of the hand. Workplace surfaces, which workers may come into contact with on a daily basis, were also contaminated with nickel. Forklift drivers showed high exposure on the index finger and palm of their hands, and this can be attributed to them not wearing any gloves for hand protection. An increase in percentage change for TEWL was seen for most of the job categories on all anatomical areas measured during the shift. Percentage change in skin surface pH and skin hydration varied among job categories. Conclusion: The research addressed the problem statement, with the stated objectives. It was hypothesised that workers at a packaging section of a base metal refinery are exposed to quantifiable levels of nickel through the dermal exposure route. The hypothesis was accepted and control measures together with future studies were recommended. The results confirmed that all workers at a base metal refinery are exposed to quantifiable levels of nickel through the dermal exposure route. Dermal exposure was evident on all anatomical areas for all job categories before the shift had commenced. Personal protective equipment was provided to all employees, but forklift drivers did not wear gloves when operating the forklift. Respirable exposure to nickel was below the OEL. Changes in TEWL and to a lesser extent skin hydration, suggest a deterioration in skin barrier function during the shift. Forklift drivers as well as plate washers may be the highest risk job categories in developing allergic contact dermatitis. Several measures to lower respiratory and dermal exposure to nickel are also recommended. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2014
34

Dermal exposure and skin barrier function of workers exposed to copper sulphate at a chemical industry / Christa Steynberg

Steynberg, Christa January 2013 (has links)
Copper exposure is known to be a rare cause of skin irritation and allergic reactions and according to our knowledge occupational dermal exposure to copper sulphate has not yet been characterised. As a result, the objectives of this study were to assess the dermal exposure of workers at a chemical industry to copper sulphate and to characterise the change in the their skin barrier function from before to the end of the work shift, as the skin’s barrier function can greatly influence the permeation of chemical substances. Methods: The change in skin barrier function of reactor workers, crystal and powder packaging workers at the chemical industry were assessed by measuring their dominant hand’s palm, back and wrist as well as their foreheads’ skin hydration, transepidermal water loss (TEWL) and skin surface pH before and at the end of the work shift. Commercial GhostwipesTM were used to collect dermal exposure samples from the same four anatomical areas before and at the end of the shift. Additional dermal exposure samples were collected from the palm and back of hand, prior to breaks 1 and 2. Surface wipe sampling was also conducted at several work and recreational areas of the chemical industry. Wipe samples were analysed by an accredited analytical laboratory, according to NIOSH method 9102 by means of Inductively Coupled Plasma-Atomic Emission Spectrometry. Results: Changes in skin hydration of the workers and anatomical areas at the end of the work shift were highly variable, while in general TEWL increased and skin surface pH decreased. Copper was collected from the skin of all workers before the shift commenced, and dermal exposure increased throughout the work shift. All of the work and recreational areas from which surface samples were taken, were contaminated with copper. Conclusion: As a result of intermittent use of inadequate protective gloves and secondary skin contact with contaminated surfaces and work clothing, workers at the chemical industry are exposed to copper sulphate via the dermal exposure route. The decrease in the workers’ skin barrier function (increased TEWL) and skin surface pH is most likely the result of their dermal exposure to sulphuric acid, and may lead to enhanced dermal penetration. The low account of skin irritation or reaction incidences among these workers is contributed to their ethnicity as well as to the low sensitisation potential of copper. Recommendations on how to lower dermal exposure and improve workers’ skin barrier function are made. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2014
35

Short-term effects of selected barrier creams on skin barrier function / Amanda Vermaak

Vermaak, Amanda January 2014 (has links)
Background: Barrier creams are applied to the surface of the skin to form a barrier that aims to prevent the penetration of irritants and allergens through the skin surface. Several inconsistencies and controversies exist in literature regarding the effect that barrier creams may have on skin barrier function. Various skin surface parameters are used to evaluate the effect that the barrier creams have on skin barrier function. These parameters include transepidermal water loss (TEWL), skin hydration and skin surface pH. Total skin thickness may be assessed as a variable on its own. Differences may exist in skin surface parameters when comparing African participants with Caucasian participants. Aim: The specific aim of this research was to evaluate the short-term1 effects of selected barrier creams on skin barrier function. Note 1: The words short-term are used in this study as each barrier cream is only tested over a period of 8 hours and not tested over a long term period of months or years. Method: Forty two non-smoking participants were included and tested in this study, of which 21 were African and the rest Caucasian. TEWL, skin hydration and skin surface pH were used to evaluate the differences in the effect of two different barrier creams (Reinol Solvgard and Momar Chex) on skin barrier function. TEWL was measured by making use of a closed chamber Vapometer (Deflin Technology Ltd., Kuopio, Finland), skin hydration using a Corneometer® CM 825 and skin surface pH using a pH meter probe (Courage and Khazaka Electronic Kӧln, Germany). A micro-pipette was used to drip a standard volume of 20 μl of ultrapure water on the skin surface before the researcher placed the pH meter probe onto the skin surface. Total skin thickness was measured by making use of ultrasound (Ultrascan 22 - TBS0061B) (Courage and Khazaka Electronic Kӧln, Germany). Three consecutive measurements were taken on the mid-forearm and the palm of the experimental arm. After baseline values were measured, 5 ml of the selected barrier cream was applied to the experimental arm. The barrier cream (selected for the day) was reapplied after 2, 4 and 6 hours and measurements were taken every 2, 4, 6 and 8 hours. The total skin thickness was measured at time zero and at 8 hours. Results: TEWL: For both barrier creams, statistical significant differences (p ≤ 0.05) were found between TEWL on the palms of African participants and Caucasian participants. Skin hydration: Statistically significant differences (p ≤ 0.05) were obtained with regard to mid-forearm skin hydration when comparing Reinol Solvgard with Momar Chex (this was applicable to both racial groups). A statistically significant difference (p ≤ 0.05) was obtained with regard to mid-forearm skin hydration when comparing African participants with Caucasian participants (this was only applicable to Reinol Solvgard). Statistical significant differences (p ≤ 0.05) were obtained with regard to skin hydration palm when comparing Reinol Solvgard with Momar Chex (this was applicable to both racial groups). Statistically significant differences (p ≤ 0.05) were obtained with regards to skin hydration palm when comparing African participants with Caucasian participants (this was applicable to both barrier creams). Skin surface pH: A statistically significant difference (p ≤ 0.05) was obtained with regard to pH of the mid-forearm when comparing Reinol Solvgard with Momar Chex (this was applicable to only the African participants). A statistical significance (p ≤ 0.05) was obtained with regards to skin surface pH mid-forearm when comparing African participants with Caucasian participants (this was applicable to Momar Chex barrier cream only). A statistically significant difference (p ≤ 0.05) was obtained with regards to the pH of the palm when comparing Reinol Solvgard with Momar Chex (this was only applicable to the African racial group). Conclusion: Using skin surface parameters, it can be concluded that Momar Chex barrier cream elicited more positive effects on skin barrier function than Reinol Solvgard barrier cream. This may be ascribed to the fact that both barrier creams lowered TEWL (positive effect), Reinol Solvgard lowered skin hydration (negative effect) whereas, Momar Chex increased the skin hydration (positive effect) and both barrier creams increased skin surface pH (negative effect). Furthermore, the objectives of this study were reached as (a) short-term effects on skin surface parameters were identified between African versus Caucasian participants, (b) significances were observed between the two barrier creams (Momar Chex and Reinol Solvgard) by making use of skin surface parameters and (c) general increases and or decreases were observed in skin surface parameters over a short term period of 8 hours. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2015
36

Dermal and respiratory exposure to nickel in a packaging section of a base metal refinery / Hendrik Johannes Claassens

Claassens, Hendrik Johannes January 2013 (has links)
Nickel is one of the most commonly known sensitisers and has been classified by the International Agency for Research on Cancer (IARC) as a possible carcinogen to humans (group 2B). Workers at a South African base metal refinery packaging area are potentially exposed to many hazardous chemicals that include nickel. Aims and Objectives: The aim and objectives of this study were to assess dermal and respiratory exposure of workers exposed to nickel in a packaging section at a South African base metal refinery and to assess the change in skin barrier function during a work shift by measuring percentage change in trans epidermal water loss (TEWL), skin hydration and skin surface pH. Skin health was established with a skin questionnaire. Surfaces that workers may come into contact with were also assessed. Method: Respiratory and dermal exposure assessment was done concurrently. Respiratory exposure was assessed and analysed by using the National Institute for Occupational Safety and Health (NIOSH) method 7300. The Institute of Occupational Medicine (IOM) inhalable aerosol sampler was used for personal air sampling. The TEWL index, skin hydration and skin surface pH of the index finger, palm, forearm and forehead were measured before and at the end of the shift with a Derma Measurement Unit, EDS 12 and Skin-pH-Meter® pH 905. These measurements were reported as percentage change in skin barrier function during the shift. Dermal exposure samples were collected with Ghostwipes™ from the index finger and palm of the dominant hand before, during and at the end of the shift, while samples from the forearm and forehead were only collected before and after the shift. Surface sampling was collected and all wipes were analysed for nickel according the NIOSH method 9102, using inductively coupled plasma-atomic emission spectrometry. Results: Respiratory exposure for the whole group of workers in a packaging section was well below the eight hour Time Weighted Average (TWA) respiratory Occupational Exposure Limit (OEL) of 0.5 mg m-3 for nickel. Dermal nickel loading was detected for all the job categories on all the anatomical areas even before the shift had commenced. During the shift more nickel was detected on the index finger and palm of the hand. Levels on the forearm and forehead were much lower in comparison with the index finger and the palm of the hand. Workplace surfaces, which workers may come into contact with on a daily basis, were also contaminated with nickel. Forklift drivers showed high exposure on the index finger and palm of their hands, and this can be attributed to them not wearing any gloves for hand protection. An increase in percentage change for TEWL was seen for most of the job categories on all anatomical areas measured during the shift. Percentage change in skin surface pH and skin hydration varied among job categories. Conclusion: The research addressed the problem statement, with the stated objectives. It was hypothesised that workers at a packaging section of a base metal refinery are exposed to quantifiable levels of nickel through the dermal exposure route. The hypothesis was accepted and control measures together with future studies were recommended. The results confirmed that all workers at a base metal refinery are exposed to quantifiable levels of nickel through the dermal exposure route. Dermal exposure was evident on all anatomical areas for all job categories before the shift had commenced. Personal protective equipment was provided to all employees, but forklift drivers did not wear gloves when operating the forklift. Respirable exposure to nickel was below the OEL. Changes in TEWL and to a lesser extent skin hydration, suggest a deterioration in skin barrier function during the shift. Forklift drivers as well as plate washers may be the highest risk job categories in developing allergic contact dermatitis. Several measures to lower respiratory and dermal exposure to nickel are also recommended. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2014
37

Dermal exposure and skin barrier function of workers exposed to copper sulphate at a chemical industry / Christa Steynberg

Steynberg, Christa January 2013 (has links)
Copper exposure is known to be a rare cause of skin irritation and allergic reactions and according to our knowledge occupational dermal exposure to copper sulphate has not yet been characterised. As a result, the objectives of this study were to assess the dermal exposure of workers at a chemical industry to copper sulphate and to characterise the change in the their skin barrier function from before to the end of the work shift, as the skin’s barrier function can greatly influence the permeation of chemical substances. Methods: The change in skin barrier function of reactor workers, crystal and powder packaging workers at the chemical industry were assessed by measuring their dominant hand’s palm, back and wrist as well as their foreheads’ skin hydration, transepidermal water loss (TEWL) and skin surface pH before and at the end of the work shift. Commercial GhostwipesTM were used to collect dermal exposure samples from the same four anatomical areas before and at the end of the shift. Additional dermal exposure samples were collected from the palm and back of hand, prior to breaks 1 and 2. Surface wipe sampling was also conducted at several work and recreational areas of the chemical industry. Wipe samples were analysed by an accredited analytical laboratory, according to NIOSH method 9102 by means of Inductively Coupled Plasma-Atomic Emission Spectrometry. Results: Changes in skin hydration of the workers and anatomical areas at the end of the work shift were highly variable, while in general TEWL increased and skin surface pH decreased. Copper was collected from the skin of all workers before the shift commenced, and dermal exposure increased throughout the work shift. All of the work and recreational areas from which surface samples were taken, were contaminated with copper. Conclusion: As a result of intermittent use of inadequate protective gloves and secondary skin contact with contaminated surfaces and work clothing, workers at the chemical industry are exposed to copper sulphate via the dermal exposure route. The decrease in the workers’ skin barrier function (increased TEWL) and skin surface pH is most likely the result of their dermal exposure to sulphuric acid, and may lead to enhanced dermal penetration. The low account of skin irritation or reaction incidences among these workers is contributed to their ethnicity as well as to the low sensitisation potential of copper. Recommendations on how to lower dermal exposure and improve workers’ skin barrier function are made. / MSc (Occupational Hygiene), North-West University, Potchefstroom Campus, 2014
38

Clinical and etiological studies on dementia of Alzheimer type and multiinfarct dementia

Bucht, Gösta January 1983 (has links)
1. Clinical studies. Clinical diagnosis of dementia has been made largely on the basis of clinical findings supported by appropriate radiological and laboratory investigations. A minority of patients have treatable or reversible underlying causes for their dementing syndrome. It is important to distinguish between the two main forms of dementia Alzheimer's disease, senile dementia of Alzheimer type (AD/SDAT) and MID so that advantage can be taken of any future progress in treatments. In the clinical study significant differences between several diagnostic procedures were found between patients with AD/SDAT and MID. Blood pressure was significantly lower in the AD/SDAT group and focal neurological signs were seen in 70% of the MID patients but only in 6% of patients with AD/SDAT. Electrocardiogram was normal in all patients with AD/SDAT but pathological in 75% of the MID patients. Electroencephalogram showed generalized slow frequencies in 79% of the AD/SDAT patients and localized changes in 65% of the MID patients. Computerized tomography showed a significantly greater dilation of the ventricular system in MID patients compared to AD/SDAT patients and controls. Monoamine metabolites in the cerebrospinal fluid were lower in AD/SDAT patients and normal in MID patients. Psychopathological signs were found to be more variable and more pronounced in the AD/SDAT group compared with MID patients. 2. Etiological studies. Immunoglobulin and albumin were found changed in serum and CSF of both AD/SDAT and MID, indicating a more active immune response in MID and a less dense cerebrospinal fluid barrier in both MID and AD/SDAT. There appears to be a consumption of IgG in the central nervous system in patients with AD/SDAT. Abnormal chromosomes appearing as acentric fragments, i.e. without visible centromeres, were found in 90% of patients with AD/SDAT, 30% of patients with MID, and not at all in the control group. Increased aneuploidy was also seen both in patients with MID and AD/SDAT. Diabetes mellitus in old age and AD/SDAT do not seem to coexist. Furthermore, patients with AD/SDAT have changed carbohydrate metabolism with decreased fasting blood sugar concentrations, increased glucose tolerance and higher concentration of insulin during an oral glucose tolerance test. / <p>S. 1-47: sammanfattning, s. 49-144: 5 uppsatser</p> / digitalisering@umu.se
39

Effets de Saccharomyces boulardii CNCM I-745 sur le complexe d'adhérence E-cadhérine/caténines dans les maladies inflammatoires chroniques de l'intestin : impact sur la barrière épithéliale intestinale / Saccharomyces boulardii CNCM I-745 modulates E-cadherin/catenins on inflammatory bowel disease : impact on the intestinal barrier function

Terciolo, Chloé 25 November 2016 (has links)
Dans de nombreuses pathologies digestives dont les maladies inflammatoires chroniques intestinales (MICI), l'intégrité de la barrière épithéliale est rompue. Cette perte d'intégrité est notamment due à la réduction ou la perte d'expression des jonctions adhérentes composées du complexe E-cadhérine/caténines. Il est donc important d'identifier de nouvelles molécules capables de réguler ce complexe dans les MICI. C'est dans ce contexte que nous nous sommes intéréssés à une levure non pathogène, Saccharomyces boulardii (Sb) utilisée dans la prévention et le traitement de désordres gastro-intestinaux et qui présente des bénéfices thérapeutiques chez les patients atteints de MICI, notamment en régulant l'intégrité de la barrière intestinale. L'étude que nous avons réalisée sur des explants tissulaires provenant de patients atteints de MICI nous a permis de mettre en évidence que le surnageant de Sb (Sbs) protège la morphologie tissulaire et maintient l'expression de la E-cadhérine à la membrane. In vitro nous avons également pu montrer que Sbs accélère la ré-expression de la E-cadhérine à la membrane en régulant son recyclage par les endosomes (Rab11A), entrainant ainsi la restauration et le renforcement de la barrière épithéliale intestinale. / Some intestinal pathologies including inflammatory bowel disease (IBD) are associated with an altered barrier function. The reduction or the lost of adherens junctions composed by E-cadherin/catenins complex are linked to changes in the barrier integrity. Characterization of molecules targeting the E-cadherin/catenins complex during IBD is crucial for the development of alternative therapies. From this perspective, we focus ours studies on a non pathogenic yeast, Saccharomyces boulardii, used to prevent and treat gastro-intestinal disorders and may have beneficial effects in IBD treatment, including the regulation of barrier integrity. Ours studies on colonic explants from IBD patients showed that Sb supernatant (Sbs) protects epithelial morphology and maintains E-cadherin expression at the cell surface. In vitro study pointed out that Sbs accelerated the recovery of E-cadherin at the cell membrane. This process involved the modulation of the recycling of E-cadherin by endosomes (Rab11A), leading to restoration and strengthening of intestinal barrier function.
40

Vitamin E Forms – Bioavailability and Protective Effects on Colitis and Colon Cancer

Kilia Y Liu (6623429) 12 October 2021 (has links)
<p>Vitamin E is a natural lipophilic antioxidant contains eight structurally related forms, i.e., α-, β-, γ-, δ-tocopherols (αT, βT, γT, and δT) and corresponding tocotrienols. Recent research indicates that vitamin E forms are differentially metabolized to various carboxychromanols. Some these vitamin E metabolites have been shown to exhibit strong anti-inflammatory and anticancer effects, yet little is known about their bioavailability. Without this knowledge, it is impossible to assess the role of vitamin E metabolism in biological functions of vitamin E forms and their protective effects on chronic diseases. While αT and γT appear to improved gut health, the underlying mechanisms are not well understood. Furthermore, specific forms of vitamin E such as γT have been reported to have cancer-preventing effects, but their anticancer efficacy is relatively modest. For these reasons, this dissertation focused on the characterization of the pharmacokinetic formation of vitamin E metabolites after supplementation, and the investigation of the underlying mechanisms of the protective effect of vitamin E forms, αT and γT, on gut health, as well as anticancer efficacy of the combination of aspirin and γT on carcinogen-induced colon tumorigenesis.</p><p><br></p><p>The first project focuses on characterizing the pharmacokinetic formation of vitamin E metabolites after single dose supplementation of γ-tocopherol-rich mixed tocopherol (γTmT) and δ-tocotrienol (δTE). With our recently developed LC/MS/MS assay for quantifying vitamin E metabolites, we can simultaneously quantify the level of short-chain, long-chain, and sulfated carboxychromanols in plasma, urine, and fecal samples of supplemented animals. In this study, we investigated the pharmacokinetics including excretion of vitamin E forms and the formation of their metabolites after a single dose intragastric administration of tocopherols and tocotrienols in rats. We also measured vitamin E metabolites in the serum obtained from healthy humans after gT supplementation. In the plasma of rat, the pharmacokinetic profiles of γT and δTE are described as the following: γT, Cmax = 25.6 ± 9.1 μM, Tmax = 4 h; δTE, Cmax = 16.0 ± 2.3 μM, Tmax = 2 h. Sulfated CEHCs and sulfated 11’-COOHs were the predominant metabolites in the plasma of rat with Cmax of 0.4-0.5 μM (Tmax ~ 5-7 h) or ~0.3 μM (Tmax at 4.7 h), respectively. In 24-h urine, 2.7% of γT and 0.7% of dTE were excreted as conjugated CEHCs, the major identified urinary metabolites. In the feces, 17-45% of supplemented vitamers were excreted as un-metabolized forms and 4.9-9.2% as metabolites. The majority of metabolites excreted in feces were unconjugated carboxychromanols, among which 13’-COOHs constituted ~50% of total metabolites. Interestingly, 13’-COOHs derived from δTE were 2-fold higher than 13’-COOH from γT. Unlike rats, γ-CEHC is the predominant metabolites found in human plasma, although 11’-COOHs and 13’-COOHs (sulfated and unconjugated) were elevated by >20 folds responding to γT supplement. In this study, we found that tocopherols and tocotrienols, when taken as supplements, are mainly excreted as un-metabolized forms and long-chain carboxychromanols in feces. High fecal availability of 13’-COOHs may contribute to modulating effects on gut health.</p><p><br></p><p>The second project of my dissertation investigated the effect of vitamin E forms, αT and γT, on intestinal barrier function in a cellular model and a mouse colitis model. Inflammatory bowel diseases (IBD) are chronic idiopathic inflammatory conditions characterized by disruption of intestinal barrier integrity. Previous studies by others and us had demonstrated that vitamin E forms, αT and γT, can protect against chemical-induced colitis in animal models. However, the role of these vitamin E forms on intestinal barrier function has not been studied. Herein, we investigated the potential protective effects of vitamin E forms, αT and γT, on intestinal barrier function in a Caco-2 colon epithelial cell model and a dextran sodium sulfate (DSS)-induced colitis mouse model. In Caco-2 cells, pretreatment with 25mM αT and γT attenuated Caco-2 monolayer barrier dysfunction induced by 10 ng/mL TNF-α/IFN-γ, suggesting that these vitamin E forms protect intestinal barrier integrity in this cellular model. In male BALB/c mice, the supplementation of αT (0.05%) or γTmT (0.05%) when given 3 weeks before DSS treatment or at the same time as DSS treatment alleviated DSS-induced fecal bleeding and diarrhea symptoms in mice, and attenuated colon inflammation and colitis-associated damages. Additionally, αT and γTmT supplementation attenuated DSS-induced intestinal barrier dysfunction, as indicated by improving the level of occludin, a tight junction protein, in the colon and reducing lipopolysaccharide-binding protein (LBP) in the plasma. Furthermore, gut microbiota analysis demonstrated that αT and γTmT supplementation could modulate intestinal microbiome composition in mice with DSS treatment. DSS treatment reduced the relative abundance of Lachnospiraceae compared to healthy mice, and supplementation of αT and γT partially reversed this effect. Interestingly, the family Lachnospiraceae has been reported to decrease in IBD patients. Our study demonstrated the protective effects of vitamin E forms on intestinal barrier integrity in a cell-based model and a colitis model in mice. Furthermore, we demonstrated that these vitamin E forms caused favorable changes in the intestinal microbial population under colitis condition.</p><p><br></p><p>The third project of my dissertation evaluated the anticancer efficacy of the combination of aspirin and γT using an azoxymethane (AOM)-induced and colitis-promoted colon tumorigenesis mouse model. Extensive inflammation in the colon promotes the development of colorectal cancer (CRC). Eicosanoid production by pro-inflammatory enzymes, cyclooxygenases (COX-1 and COX-2) and 5-lipoxygenase (5-LOX) play a critical role in the initiation, progression, and invasion of CRC. Thus, nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, have been recommended for chemoprevention of CRC. However, long-term use of aspirin can cause many side effects, and the anticancer activity of aspirin is very modest. Previously, we have demonstrated that the combination of γT with aspirin prolonged the anti-inflammatory activity of aspirin and alleviated aspirin-associated adverse effects in a carrageenan-induced inflammation model in rats. Additionally, we found that the combination of γT and aspirin has stronger anticancer activity than aspirin or γT alone against HCT-116 human colorectal carcinoma cells. Therefore, we examined the anticancer effect of the combination of 0.025% aspirin and 0.05% γT against AOM-induced and DSS-promoted tumorigenesis in mice. In this study, we have found that the combination of aspirin and γT, but not aspirin or γT alone, suppressed colon tumorigenesis in mice, as indicated by 40% and 50% reduction in the multiplicity of total polyps (P < 0.05) and large adenomatous polyps (>2mm2, P < 0.05), respectively. More strikingly, the combination of aspirin and γT reduced the overall tumor area by 60% (P < 0.05). Noteworthy, the supplementation of γT also alleviated aspirin-induced stomach lesion and appeared to modulate intestinal microbial composition. Our study demonstrated that the combination of aspirin and γT has stronger anticancer activity than aspirin or γT alone while alleviates aspirin-associated adverse effect, suggesting that the combination of γT and aspirin is a more effective and safer chemopreventive agent for CRC than aspirin alone.</p>

Page generated in 0.468 seconds