• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 11
  • 11
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and implementation of a programmable logic controller lab: An internet based monitoring and control of a process

Imaev, Aleksey January 2002 (has links)
No description available.
2

TCP/AQM Congestion Control Based on the H2/H∞ Theory

Haghighizadeh, Navin January 2016 (has links)
This thesis uses a modern control approach to address the Internet traffic control issues in the Transport Layer. Through literature review, we are interested in using the H2/H∞ formulation to obtain the good transient performance of an H2 controller and the good robust property from an H∞ controller while avoiding their deficiencies. The H2/H∞ controller is designed by formulating an optimization problem using the H2-norm and the H∞-norm of the system, which can be solved by an LMI approach using MATLAB. Our design starts with the modeling of a router and the control system by augmenting the network plant function with the Sensitivity function S, the Complementary Sensitivity function T and the Input Sensitivity function U. These sensitivity functions along with their weight functions are used to monitor the closed-loop dynamics of the traffic control. By choosing different combinations of the sensitivity functions, we can obtain the SU, the ST and the STU controllers. Both the window-based and rate-based version of these different types of H2/H∞ controllers have been designed and investigated. We have also proved that these controllers are stable using Lyapunov’s First Method. Next, we verify the performance of the controllers by OPNET simulation using different performance measures of queue length, throughput, queueing delay, packet loss rate and goodput. Our performance evaluation via simulation has demonstrated the robustness and the better transient response such as the rise/fall time and the peak queue value. We have also investigated the controller performances subject to network dynamics as well as through comparison with other controllers. Finally, we have improved these controllers for real-time application. They are capable to update/renew the controller in a short time whenever new network parameter values are detected so that the optimum performance can be maintained.
3

Optimal demand response from home energy management system : modeling and benefits for distribution networks

Althaher, Sereen January 2015 (has links)
The increasing levels of renewable generation and the electrification of transport and heating as parts of the movement towards low-carbon energy systems to cope with climate change will place significant challenges on the electricity system to facilitate the way towards future low carbon energy systems in a cost effective way and ensure secure power delivery. New solutions and higher levels of flexibility are required than currently exist in order to reduce the integration costs of low carbon generation and demand technologies. Price-based demand response in residential sector is considered as one of these potential solutions. However, a certain level of automation is required to reduce both the uncertainty in the consumer response and the complexity for consumers to react to the price signal. This thesis presents a comprehensive and general residential optimization-based Automated Demand Response (ADR). The modelling of home appliances has been extensively developed to include all the classifications proposed in the literature, namely, deferrable and thermal in addition to new groups of critical and fully curtailable loads. The operations of the appliances are controlled in response to dynamic price signals to reduce the consumer’s electricity bill whilst minimizing the daily volume of curtailed energy and therefore considering the user’s comfort level. To avoid shifting most portion of consumer demand towards the least price intervals, which could create network issues due to loss of diversity, higher prices are applied when the consumer’s demand goes beyond a power threshold level. The arising mixed integer nonlinear optimization problem is solved in an iterative manner rolling throughout the day to follow the changes in the anticipated price signals and the variations in the controller inputs while information is updated. The results from different case studies show the effectiveness of the proposed controller to minimize the household’s daily electricity bill while preserving comfort level as well as preventing creation of new least-price peaks. This thesis also proposes a two-stage distribution-planning framework to assess the benefits of the proposed ADR models in response to a location-specific time of use Distribution Use of Systems Charge (DUoSC) on the required investments to connect future low-carbon technologies. The network investments and the satisfaction of consumers in terms of energy curtailment are both quantified. The first stage aims to generate location-specific time of use price signals for all users in the network, which represents their contributions in future network investments due to congestion and security constraints. The second stage relates to a group of ADR controllers at residential premises that aims to minimise the daily energy payment whilst maximising consumer comfort in response to the corresponding price signal produced from the first stage.
4

Using fuzzy logic to enhance control performance of sliding mode control and dynamic matrix control

Sanchez, Edinzo J. Iglesias 01 June 2006 (has links)
Two application applications of Fuzzy Logic to improve the performance of two controllers are presented. The first application takes a Sliding Mode Controller designed for chemical process to reject disturbances. A fuzzy element is added to the sliding surface to improve the controller performance when set point change affects the control loop; especially for process showing highly nonlinear behavior. This fuzzy element, , is calculated by means of a set of fuzzy rules designed based on expert knowledge and experience. The addition of improved the controller response because accelerate or smooth the controller as the control loop requires. The Fuzzy Sliding Mode Controller (FSMCr) is a completely general controller. The FSMCr was tested with two models of nonlinear process: mixing tank and neutralization reactor. In both cases the FSMCr improves the performance shown for other control strategies, as the industrial PID, the conventional Sliding Mode Control and the Stan dard Fuzzy Logic Controller. The second part of this research presents a new way to implement the Dynamic Matrix Control Algorithm (DMC). A Parametric structure of DMC (PDMC) control algorithm is proposed, allowing to the controller to adapt to process nonlinearities. For a standard DMC a process model is used to calculate de controller response. This model is a matrix calculated from the dynamic response of the process at open loop. In this case the process parameters are imbibed into the matrix. The parametric structure isolates the process parameters allowing adjust the model as the nonlinear process changes its behavior. A Fuzzy supervisor was developed to detect changes in the process and send taht [sic]information to the PDMCr. The modeling error and other parameters related were used to estimate those changes. Some equations were developed to calculate the PDMCr tuning parameter,lambda, as a function of the process parameters. The performance of PDMCr was tested using to model of nonlinear process and compare with the standard DMC; in most the cases PDMCr presents less oscillations and tracks with less error the set point. Both control strategies presented in this research can be implemented into industrial applications easily.
5

Variable structure control of robot manipulators (the example of the SPRINTA)

Nigrowsky, Pierre January 2000 (has links)
The subject of this thesis is the design and practical application of a model-based controller with variable structure control (VSC). Robot manipulators are highly non-linear systems, however they form a specific class in the non-linear group. Exact mathematical descriptions of the robot dynamics can be achieved and further, robot manipulators have specific useful properties that can be used for the design of advanced controllers. The inclusion of the inverse dynamic description of the robot manipulator as a feedforward term of the controller (model-based controller) is used to transform two non-linear systems i.e. the controller and the robot, into one linear system. The limitation of this technique arises from the accuracy of the inverse dynamic model. The linearisation only takes place if the model is known exactly. To deal with the uncertainties that arise in the model, a control methodology based on variable structure control is proposed. The design of the controller is based on a Lyapunov approach and engineering considerations of the robot. A candidate Lyapunov function of a pseudo-energy form is selected to start the controller design. The general form of the controller is selected to satisfy the negative definiteness of the Lyapunov function. The initial uncertainties between the actual robot dynamics and the model used in the controller are dealt with using a classical VSC regulator. The deficiencies of this approach are evident however because of the chattering phenomenum. The model uncertainties are examined from an engineering point of view and adjustable bounds are then devised for the VSC regulator, and simulations confirm a reduction in the chattering. Implementation on the SPRINTA robot reveals further limitations in the proposed methodology and the bound adjustment is enhanced to take into account the position of the robot and the tracking errors. Two controllers based on the same principle are then obtained and their performances are compared to a PID controller, for three types of trajectory. Tests reveal the superiority of the devised control methodology over the classic PID controller. The devised controller demonstrates that the inclusion of the robot dynamics and properties in the controller design with adequate engineering considerations lead to improved robot responses.
6

Design, Modeling, and Control of an Active Prosthetic Knee

Borjian, Roozbeh 26 September 2008 (has links)
The few microcontroller based active/semi-active prosthetic knee joints available commercially are extremely expensive and do not consider the uncertainties of inputs sensory information. Progressing in the controller of the current prosthetic devices and creating artificial lower limbs compatible with different users may lead to more effective and low-cost prostheses. This can affect the life style of lots of amputees specially the land-mine victims in developing war-torn countries who are unable to partake in the advancement of the current intelligent prosthetic knees. The purpose of the proposed Active Prosthetic Knee (APK) design is to investigate a new schema that allows the device to provide the full necessary torque at the knee joint based on echoing the state of the intact leg. This study involves the design features of the mechanical aspects, sensing system, communication, and knowledge-based controller to implement a cost-effective APK. The proposed microcontroller based prosthesis utilizes a ball screw system accompanied by a high-speed brushed servomotor to provide one degree of freedom for the fabricated prototype. Moreover, a modular test-bed is manufactured to mimic the lower limb motion which contributes investigating different controllers for the prototype. Thus, the test bed allows assessing the primary performance of the APK before testing on a human subject. Different types of sensing systems (electromyography and lower limb inclination angles) are investigated to extract signals from the user’s healthy leg and send the captured data to the APK controller. The methodology to measure each type of signal is described, and comparison analyses are provided. Wireless communication between the sensory part and actuator is established. A knowledge-based control mechanism is developed that takes advantage of an Adaptive-Network-based Fuzzy Inference System (ANFIS) to determine knee torque as a function of the echoing angular state of the able leg considering the uncertainty of inputs. Therefore, the developed controller can make the APK serviceable for different users. The fuzzy membership function’s parameters and rules define the knowledge-base of the system. This knowledge is based on existing experience and known facts about the walking cycle.
7

Design, Modeling, and Control of an Active Prosthetic Knee

Borjian, Roozbeh 26 September 2008 (has links)
The few microcontroller based active/semi-active prosthetic knee joints available commercially are extremely expensive and do not consider the uncertainties of inputs sensory information. Progressing in the controller of the current prosthetic devices and creating artificial lower limbs compatible with different users may lead to more effective and low-cost prostheses. This can affect the life style of lots of amputees specially the land-mine victims in developing war-torn countries who are unable to partake in the advancement of the current intelligent prosthetic knees. The purpose of the proposed Active Prosthetic Knee (APK) design is to investigate a new schema that allows the device to provide the full necessary torque at the knee joint based on echoing the state of the intact leg. This study involves the design features of the mechanical aspects, sensing system, communication, and knowledge-based controller to implement a cost-effective APK. The proposed microcontroller based prosthesis utilizes a ball screw system accompanied by a high-speed brushed servomotor to provide one degree of freedom for the fabricated prototype. Moreover, a modular test-bed is manufactured to mimic the lower limb motion which contributes investigating different controllers for the prototype. Thus, the test bed allows assessing the primary performance of the APK before testing on a human subject. Different types of sensing systems (electromyography and lower limb inclination angles) are investigated to extract signals from the user’s healthy leg and send the captured data to the APK controller. The methodology to measure each type of signal is described, and comparison analyses are provided. Wireless communication between the sensory part and actuator is established. A knowledge-based control mechanism is developed that takes advantage of an Adaptive-Network-based Fuzzy Inference System (ANFIS) to determine knee torque as a function of the echoing angular state of the able leg considering the uncertainty of inputs. Therefore, the developed controller can make the APK serviceable for different users. The fuzzy membership function’s parameters and rules define the knowledge-base of the system. This knowledge is based on existing experience and known facts about the walking cycle.
8

Neural network modelling and control of coal fired boiler plant

Thai, Shee Meng January 2005 (has links)
This thesis presents the development of a Neural Network Based Controller (NNBC) for chain grate stoker fired boilers. The objective of the controller was to increase combustion efficiency and maintain pollutant emissions below future medium term stringent legislation. Artificial Neural Networks (ANNs) were used to estimate future emissions from and control the combustion process. Initial tests at Casella CRE Ltd demonstrated the ability of ANNs to characterise the complex functional relationships which subsisted in the data set, and utilised previously gained knowledge to deliver predictions up to three minutes into the future. This technique was then built into a carefully designed control strategy that fundamentally mimicked the actions of an expert boiler operator, to control an industrial chain grate stoker at HM Prison Garth, Lancashire. Test results demonstrated that the developed novel NNBC was able to control the industrial stoker boiler plant to deliver the load demand whilst keeping the excess air level to a minimum. As a result the NNBC also managed to maintain the pollutant emissions within probable future limits for this size of boiler. This prototype controller would thus offer the industrial coal user with a means to improve the combustion efficiency on chain grate stokers as well as meeting medium term legislation limits on pollutant emissions that could be imposed by the European Commission.
9

A strategy for the synthesis of real-time statistical process control within the framework of a knowledge based controller

Crowe, Edward R. January 1995 (has links)
No description available.
10

Modélisation, observation et commande d’une classe d’équations aux dérivées partielles : application aux matériaux semi-transparents / Modeling, analysis and control for a class of partial differential equations : application to thermoforming of semi-transparent materials

Ghattassi, Mohamed 29 September 2015 (has links)
Le travail présenté dans ce mémoire nous a permis d’étudier d’un point de vue théorique et numérique le transfert de chaleur couplé par rayonnement et conduction à travers un milieu semi-transparent, gris et non diffusant dans une géométrie multidimensionnelle 2D. Ces deux modes de transfert de chaleur sont décrits par un couplage non linéaire de l’équation de la chaleur non linéaire (CT) et de l’équation du transfert radiatif (ETR). Nous avons présenté des résultats d’existence, d’unicité locale de la solution pour le système couplé avec des conditions aux limites de type Dirichlet homogènes en utilisant le théorème du point fixe de Banach. Par ailleurs, les travaux réalisés nous ont permis de mettre au point un code de calcul qui permet de simuler la température. Nous avons utilisé la quadrature S_N pour la discrétisation angulaire de l’ETR. La discrétisationde l'ETR dans la variable spatiale est effectuée par la méthode de Galerkin discontinue (DG) et en éléments finis pour l'équation de la chaleur non linéaire. Nous avons démontré la convergence du schémanumérique couplé en utilisant la méthode du point fixe discret. Le modèle discret, sous la forme d’équations différentielles ordinairesnon linéaires obtenu après une approximation nous a permis de fairel’analyse et la synthèse d’estimateurs d’état et de lois de commandepour la stabilisation. Grâce à la structure particulière du modèle età l’aide du DMVT. Nous avons proposé un observateur d’ordre réduit.D’autre part nous avons réussi à construire une matrice de gain quiassure la stabilité de l’observateur proposé. Une extension au filtrage $\mathcal{H}_{\infty}$ est également proposée. Une nouvelleinégalité matricielle (LMI) est donnée dans le cas d’une commandebasée observateur. Nous avons étendu à l’approche d’ordre réduit dans le cas de la commande basée observateur et nous avons montré la stabilité sous l’action de la rétroaction. De même une extension au filtrage $\mathcal{H}_{\infty}$ est également proposée. Tous les résultats sont validés par des simulations numériques. / This thesis investigates the theoretical and numerical analysis of coupled radiative conductive heat transfer in a semi-transparent, gray and non-scattering 2D medium. This two heat transfer modes are described by the radiative transfer equation (RTE) and the nonlinear heat equation (NHE). We proved the existence and uniqueness of the solution of coupled systems with homogeneous Dirichlet boundary conditions using the fixed-point theorem. Moreover, we developed a useful algorithm to simulate the temperature in the medium. We used the quadrature $S_{N}$ for the angular discretization of the RTE. The spatial discretization of RTE was made by the discontinuous Galerkin method (DG) and the finite element method for the non-linear heat equation. We have shown the convergence and the stability of the coupled numerical scheme using the discrete fixed point. The discrète model obtained after an approximation allowed us to do the analysis and synthesis of state estimators and feedback control design for stabilization of the system. Thanks to the special structure of the model and using the Differential Mean Value Theorem (DMVT), we proposed a reduced order observer and we construct a gain matrix, which ensures the exponential stability of the proposed observer and guarantees the boundedness of the estimate vector. An extension to $\mathcal{H}_{\infty}$ filtering is also provided. We have extended the reduced order approach in the case of the observer-based controller and we proved the exponential stability under the control feedback law. Similarly, an extension to $\mathcal{H}_{\infty}$ filtering is also provided. The obtained results were validated through several numerical simulations.

Page generated in 0.0879 seconds