• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 599
  • 235
  • 115
  • 73
  • 47
  • 37
  • 32
  • 16
  • 13
  • 9
  • 7
  • 5
  • 5
  • 4
  • 3
  • Tagged with
  • 1347
  • 256
  • 252
  • 212
  • 192
  • 186
  • 180
  • 162
  • 118
  • 103
  • 101
  • 98
  • 93
  • 90
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

DEFORMATION OF BEARING PADS WHILE UNDER SERVICE LOADS

Suits, Chris Allen 01 May 2013 (has links)
Bearing pads undergo deformation while under service loads of any bridge. The pad translates the load to the support structure, and allows for movement of the superstructure. The deformation of bearing pads is an important element to consider when designing both the super and sub structures of the bridge. The Federal Highway Administration provides a guide for the design of steel brigdes, and Step 6 of this guide covers the design of bearing pads. The purpose of this study is to analyze the deformation of bearing pads using a finite element analysis software. This study will analyze two separate models, one ignoring the steel plates in a bearing pad and ignoring friction, while the other will take into account the steel plates as well as friction during the analysis. Once the linear analysis is run the models that are built can be compared with the FHWA design examples to compare and verify the results. This will facilitate the possible improvement of current design examples and allow for a more realistic result for designers to use. This study also looks at the internal testing results provided by a bearing pad manufacturing company. These internal results will provide a real world model for the linear analysis models to be compared to as well. Once all factors are taken into account, the validity of the current standards can be evaluated.
32

Dynamic metrology of error motions in precision spindles using optical metrology

Idowu, Ade January 1998 (has links)
Knowledge of the accuracies of air bearing spindles in the sub-micrometre to nanometre range is required for the design, commissioning and operation of ultra-precise machine tools, measurement systems and other machines employing high precision rotational motion. In order to verify the dynamic performance of a spindle, measurement is required of its error motions in the unwanted five degrees of freedom (one axial, two tilts and two radial motions). Presentation of these error motions (eg in the form of polar charts) can then be used to provide critical spindle metrology data including total, asynchronous and average error motion rosette profiles and their average and peak values. This thesis describes a metrology system based on optical interferometry for measuring such unwanted error motions in three degrees of freedom involving motion along the spindle axis (axial rectilinear displacement and tilts about orthogonal axes), incurred with rotation of a precision air spindle over its specified speed-range. The system is not sensitive to orthoaxial translations which may be measured using alternative methods. Possible alternative techniques for measuring any of the degrees of freedom include an array of proximity sensors, (one for each translational degree of freedom and a further one for each of the other rotational degrees of freedom), to measure the run-out of an artefact. Proximity sensors based upon capacitive or optical fibre back-scatter techniques each offer the required single degree-of-freedom non-contacting capability and bandwidth. In the current work, a Fizeau interferometer is used to monitor the motion of the spindle of a vertical axis ultra-precision facing machine using a test-artefact. This is a mirror with less than one fringe departure from planarity from which interferogram. fringe-patterns are captured, digitised and analysed synchronously as the spindle rotates. The issue of the prediction of the dynamic form and motions of the observed interferograrn arises and the earlier theory is extended to optimise the set-up, including provision of automatic servo- alignment of the optical axis with the axis of the spindle. Measurement interferograrn data is sampled at selected angular incremental positions of spindle-rotation and image processing techniques used to filter the fringe pattern, enabling measurement of spindle tilt and axial displacement. Issues of sampling with respect to the anticipated spatial angular frequency of the spindle run-out are considered with respect to the speed/frequency capability of data-acquisition and processing arrangements. Essentially, with a spindle rotating at typical machining speeds of 300- 3000 rev/min, for consistent error motions, the resolution of an error plot is principally a function of observational time. It is foreseen that the system will be applicable in research and production-support in ultra-precision machining production processes and in rotational metrology.
33

The effect of microstructure on the performance of bearing steels with particular reference to their operation with water containing lubricants

Akbasoglu, Fuat Can January 1988 (has links)
No description available.
34

An investigation into fluid film lubrication in dynamically loaded bearings

Paydas, Atil January 1998 (has links)
This thesis is concerned with the development of a nunerical technique for the computational analysis of ruptured liquid films in both steadily and dynamically loaded bearings. The approach is based on the principle of oil flow continuity. A cavitation algorithm, proposed by H. G. Elrod, was implemented for studies of hydrodynamic lubrication in infinitely long cylinder/plane bearings (i.e. non-conformal contacts) under combined sliding, rolling and normal motion. Difficulties involved in the implementation of this algorithm were investigated in great depth. A new 'improved' method of solution, which is well-suited to the computational analyses of steadily and dynamically loaded bearings, was developed. The improved technique involves the solution of the hydrodynamic lubrication problem for oil film pressures or degrees of lubricant filling in the full film and cavitated regions of a bearing. Detailed studies of cylinder/plane under conditions of both instantaneous and sinusoidal normal motion were performed. The improved solution was shown to facilitate the implicit implementation of the Jakobsson-Floberg-011son boundary conditions (i.e. the inclusion of 'oil film history' phencinena) in dynamically loaded bearing analyses. Detailed comparisons between the oil film history and classical solutions, and published experimental studies were made. Computer programs based on the classical Reynolds equation and the improved method of solution were developed for the analysis of circuTiferentially grooved, finite journal bearings operating under steady-state and dynamic loading conditions. The improved method of solution produced more realistic predictions of performance characteristics, particularly oil film extent, oil flow and bearing power loss. Comprehensive comparisons with published theoretical and experimental studies were made. Encouraging agrenent was obtained between the oil flow continuity analyses and experiments. Journal centre orbit analyses of dynamically loaded bearings, typically found in reciprocating engines, indicated that the oil film history solution may reveal a nunber of new features of time-varying performance characteristics not previously predicted by the classical Reynolds solution.
35

An Experimental Study of Power Losses of Full-complement Needle Bearings of Planetary Gear Sets

Stilwell, Alex William 22 June 2012 (has links)
No description available.
36

Evaluation of Alternate Bearing Designs in a High Speed Automotive Turbocharger

Mondscehin, Brian David 21 July 2010 (has links)
Automotive turbochargers experience self-excited instabilities through the majority of their operating speed range. The results of these instabilities can cause damage to the bearings, shafts, and housing walls. Preventing this damage while maintaining or increasing performance characteristics is a huge concern to industry due to the time and money needed to replace vital components. The aim of this research is to determine which characteristics of the bearings have the greatest influence on the damped natural frequencies. It was believed that axial groove bearings could offer an acceptable alternative to the floating ring bearings currently found in automotive turbochargers. DyRoBeS rotor dynamics software was used to determine analytically damped natural frequencies for floating ring bearings, and also for six, eight, and ten axial groove fixed geometry bearings, under different speed and loading conditions. The resulting data were compared to experimental test results from an on-engine turbocharger test stand and presented in this report. / Master of Science
37

Delevitation modelling of an active magnetic bearing supported rotor / Jan Jacobus Janse van Rensburg

Van Rensburg, Jan Jacobus Janse January 2014 (has links)
The problem addressed in this thesis is the delevitation modelling of an active magnetic bearing (AMB) supported rotor. A system model needs to be developed that models the highly non-linear interaction of the rotor with the backup bearings (BBs) during a delevitation event. The model should accurately predict forward and backward whirl as well as the system forces experienced. To this end, the severity of rotor delevitation events should be characterised. The contributions of the research include a more comprehensive model of a cross-coupled flexible rotor-AMB-BB system, a method to obtain repeatable experimental results, two methods for quantifying the severity of a rotor-drop (RDQ and Vval) and the simulation of forward whirl. A simulation model (BBSim) was developed to predict the behaviour of a rotor in rolling element BBs in an AMB system during a rotor delevitation event. The model was validated using a novel rotor delevitation severity quantification method (Vval) to compare experimental and simulated results. In this study the force impulse values as the rotor impacts the BBs are seen as critical to monitor, as an indication of rotor drop severity. The novel quantification method was verified by comparing the impulse values of delevitation events to the values obtained for the same delevitation events using the novel quantification method. The simulation model (BBSim) was developed by integrating and cross coupling various simpler models to obtain a model that could accurately predict the behaviour of a rotor during a delevitation event. A plethora of simulation results were generated for various initial conditions. The simulation results were used to perform a parametric study, from which the effects that certain design parameters have on the severity of rotor delevitation events are determined. The novel quantification method results presented in this research compared well to the impulse values. Since most AMB systems that have BBs do not have force measurement capabilities, the development of the novel quantification method enables the quantification of rotor drop severity solely based on position data. The simulation model BBSim was found to accurately predict the behaviour of a rotor during a delevitation event. The parametric study completed using BBSim revealed that the severity of rotor delevitation events is less sensitive to the bearing stiffness than the bearing damping. The parametric study also found that the severity of a delevitation event is slightly sensitive to the angle of delevitation. The friction factor between the rotor and the inner-race of the rolling element bearings moderately influences the severity of the rotor delevitation event. The inertia of the rolling element bearing’s inner-race and balls influences the behaviour in a complex manner, where the inertia should be kept as low as possible for actively braked rotors, and should be higher for free running rotors. The unbalance of the rotor plays a major role in the severity of rotor delevitation events. A rotor with a high unbalance usually tends to go into forward whirl, whereas low unbalance could promote the development of backward whirl if the inertia of the inner-race and the friction factor between the inner-race and the rotor are excessively large. Some of the recommended future work to be done on BBSim Include investigations into load sharing, various failure modes of AMBs, the effect that rotor circularity has on the stability of AMB control and an investigation into forward whirl. Envisaged improvements that can be made to BBSim are the inclusion of an axial rotor AMB and BB model, cross-coupled with the existing BBSim model. Other improvements could be the inclusion of thermal modelling and the ability to simulate other types of BBs. Future experimental work could include a comparison of simulated and experimental results of larger systems and using the developed quantification methods to refine the defined threshold values for the safe operation of AMB systems. / PhD, North-West University, Potchefstroom Campus, 2014 / Appendix C is attached seperately because of the size of the pdf (920 MB). If it is too large to download, please loan the hardcopy with the CD from the Loan desk in the Ferdinand Postma Library.
38

Delevitation modelling of an active magnetic bearing supported rotor / Jan Jacobus Janse van Rensburg

Van Rensburg, Jan Jacobus Janse January 2014 (has links)
The problem addressed in this thesis is the delevitation modelling of an active magnetic bearing (AMB) supported rotor. A system model needs to be developed that models the highly non-linear interaction of the rotor with the backup bearings (BBs) during a delevitation event. The model should accurately predict forward and backward whirl as well as the system forces experienced. To this end, the severity of rotor delevitation events should be characterised. The contributions of the research include a more comprehensive model of a cross-coupled flexible rotor-AMB-BB system, a method to obtain repeatable experimental results, two methods for quantifying the severity of a rotor-drop (RDQ and Vval) and the simulation of forward whirl. A simulation model (BBSim) was developed to predict the behaviour of a rotor in rolling element BBs in an AMB system during a rotor delevitation event. The model was validated using a novel rotor delevitation severity quantification method (Vval) to compare experimental and simulated results. In this study the force impulse values as the rotor impacts the BBs are seen as critical to monitor, as an indication of rotor drop severity. The novel quantification method was verified by comparing the impulse values of delevitation events to the values obtained for the same delevitation events using the novel quantification method. The simulation model (BBSim) was developed by integrating and cross coupling various simpler models to obtain a model that could accurately predict the behaviour of a rotor during a delevitation event. A plethora of simulation results were generated for various initial conditions. The simulation results were used to perform a parametric study, from which the effects that certain design parameters have on the severity of rotor delevitation events are determined. The novel quantification method results presented in this research compared well to the impulse values. Since most AMB systems that have BBs do not have force measurement capabilities, the development of the novel quantification method enables the quantification of rotor drop severity solely based on position data. The simulation model BBSim was found to accurately predict the behaviour of a rotor during a delevitation event. The parametric study completed using BBSim revealed that the severity of rotor delevitation events is less sensitive to the bearing stiffness than the bearing damping. The parametric study also found that the severity of a delevitation event is slightly sensitive to the angle of delevitation. The friction factor between the rotor and the inner-race of the rolling element bearings moderately influences the severity of the rotor delevitation event. The inertia of the rolling element bearing’s inner-race and balls influences the behaviour in a complex manner, where the inertia should be kept as low as possible for actively braked rotors, and should be higher for free running rotors. The unbalance of the rotor plays a major role in the severity of rotor delevitation events. A rotor with a high unbalance usually tends to go into forward whirl, whereas low unbalance could promote the development of backward whirl if the inertia of the inner-race and the friction factor between the inner-race and the rotor are excessively large. Some of the recommended future work to be done on BBSim Include investigations into load sharing, various failure modes of AMBs, the effect that rotor circularity has on the stability of AMB control and an investigation into forward whirl. Envisaged improvements that can be made to BBSim are the inclusion of an axial rotor AMB and BB model, cross-coupled with the existing BBSim model. Other improvements could be the inclusion of thermal modelling and the ability to simulate other types of BBs. Future experimental work could include a comparison of simulated and experimental results of larger systems and using the developed quantification methods to refine the defined threshold values for the safe operation of AMB systems. / PhD, North-West University, Potchefstroom Campus, 2014 / Appendix C is attached seperately because of the size of the pdf (920 MB). If it is too large to download, please loan the hardcopy with the CD from the Loan desk in the Ferdinand Postma Library.
39

Indoor Positioning Using Angle of Departure Information

Gunhardson, Erica January 2015 (has links)
I detta examensarbete undersöks möjligheten att kunna använda en positioneringsmetod som inte enbart förlitar sig på den uppmätta signalstyrkan. Istället används en metod som bestämmer från vilken vinkel en signal uppkommer ifrån. Den här tekniken kallas för direction-finding. När informationen om signalens vinkel fastställts används den i ett positioningsfilter som uppskattar positionen. Två tillvägagångssätt har använts i den här rapporten, ett där enbart vinkeln används och ett där både signalstyrka och vinkel används.
40

DESIGN OF A LORENTZ, SLOTLESS SELF-BEARING MOTOR FOR SPACE APPLICATIONS

Steele, Barrett Alan 01 January 2003 (has links)
The harsh conditions of space, the stringent requirements for orbiting devices, and the increasing precision pointing requirements of many space applications demand an actuator that can provide necessary force while using less space and power than its predecessors. Ideally, this actuator would be able to isolate vibrations and never fail due to mechanical wear, while pointing with unprecedented accuracy. This actuator has many space applications from satellite optical communications and satellite appendage positioning to orbiting telescopes. This thesis presents the method of design of such an actuator a self-bearing motor. The actuator uses Lorentz forces to generate both torque and bearing forces. It has a slotless winding configuration with four sets of three-phase currents. A stand-alone software application, LFMD, was written to automatically optimize and configure such a motor according to a designers application requirements. The optimization is done on the bases of minimum powerloss, minimum motor outer diameter, minimum motor mass, and minimum length. Using that program, two sample space applications are analyzed and applicable motor configurations are presented.

Page generated in 0.0581 seconds