• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 258
  • 135
  • 24
  • 16
  • 12
  • 9
  • 9
  • 9
  • 8
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 549
  • 204
  • 85
  • 80
  • 73
  • 70
  • 69
  • 60
  • 52
  • 44
  • 43
  • 42
  • 40
  • 39
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Timing of wild bee emergence: mechanisms and fitness consequences / Zeitliche Abstimmung des Bienenschlupfes: Mechanismen und Fitnesskonsequenzen

Schenk [née Wolf], Mariela January 2018 (has links) (PDF)
Solitary bees in seasonal environments have to align their life-cycles with favorable environmental conditions and resources. Therefore, a proper timing of their seasonal activity is highly fitness relevant. Most species in temperate environments use temperature as a trigger for the timing of their seasonal activity. Hence, global warming can disrupt mutualistic interactions between solitary bees and plants if increasing temperatures differently change the timing of interaction partners. The objective of this dissertation was to investigate the mechanisms of timing in spring-emerging solitary bees as well as the resulting fitness consequences if temporal mismatches with their host plants should occur. In my experiments, I focused on spring-emerging solitary bees of the genus Osmia and thereby mainly on O. cornuta and O. bicornis (in one study which is presented in Chapter IV, I additionally investigated a third species: O. brevicornis). Chapter II presents a study in which I investigated different triggers solitary bees are using to time their emergence in spring. In a climate chamber experiment I investigated the relationship between overwintering temperature, body size, body weight and emergence date. In addition, I developed a simple mechanistic model that allowed me to unite my different observations in a consistent framework. In combination with the empirical data, the model strongly suggests that solitary bees follow a strategic approach and emerge at a date that is most profitable for their individual fitness expectations. I have shown that this date is on the one hand temperature dependent as warmer overwintering temperatures increase the weight loss of bees during hibernation, which then advances their optimal emergence date to an earlier time point (due to an earlier benefit from the emergence event). On the other hand I have also shown that the optimal emergence date depends on the individual body size (or body weight) as bees adjust their emergence date accordingly. My data show that it is not enough to solely investigate temperature effects on the timing of bee emergence, but that we should also consider individual body conditions of solitary bees to understand the timing of bee emergence. In Chapter III, I present a study in which I investigated how exactly temperature determines the emergence date of solitary bees. Therefore, I tested several variants degree-day models to relate temperature time series to emergence data. The basic functioning of such degree-day models is that bees are said to finally emerge when a critical amount of degree-days is accumulated. I showed that bees accumulate degree-days only above a critical temperature value (~4°C in O. cornuta and ~7°C in O. bicornis) and only after the exceedance of a critical calendar date (~10th of March in O. cornuta and ~28th of March in O. bicornis). Such a critical calendar date, before which degree-days are not accumulated irrespective of the actual temperature, is in general less commonly used and, so far, it has only been included twice in a phenology model predicting bee emergence. Furthermore, I used this model to retrospectively predict the emergence dates of bees by applying the model to long-term temperature data which have been recorded by the regional climate station in Würzburg. By doing so, the model estimated that over the last 63 years, bees emerged approximately 4 days earlier. In Chapter IV, I present a study in which I investigated how temporal mismatches in bee-plant interactions affect the fitness of solitary bees. Therefore, I performed an experiment with large flight cages serving as mesocosms. Inside these mesocosms, I manipulated the supply of blossoms to synchronize or desynchronize bee-plant interactions. In sum, I showed that even short temporal mismatches of three and six days in bee-plant interactions (with solitary bee emergence before flower occurrence) can cause severe fitness losses in solitary bees. Nonetheless, I detected different strategies by solitary bees to counteract impacts on their fitness after temporal mismatches. However, since these strategies may result in secondary fitness costs by a changed sex ratio or increased parasitism, I concluded that compensation strategies do not fully mitigate fitness losses of bees after short temporal mismatches with their food plants. In the event of further climate warming, fitness losses after temporal mismatches may not only exacerbate bee declines but may also reduce pollination services for later-flowering species and affect populations of animal-pollinated plants. In conclusion, I showed that spring-emerging solitary bees are susceptible to climate change as in response to warmer temperatures bees advance their phenology and show a decreased fitness state. As spring-emerging solitary bees not only consider overwintering temperature but also their individual body condition for adjusting emergence dates, this may explain differing responses to climate warming within and among bee populations which may also have consequences for bee-plant interactions and the persistence of bee populations under further climate warming. If in response to climate warming plants do not shift their phenologies according to the bees, bees may experience temporal mismatches with their host plants. As bees failed to show a single compensation strategy that was entirely successful in mitigating fitness consequences after temporal mismatches with their food plants, the resulting fitness consequences for spring-emerging solitary bees would be severe. Furthermore, I showed that spring-emerging solitary bees use a critical calendar date before which they generally do not commence the summation of degree-days irrespective of the actual temperature. I therefore suggest that further studies should also include the parameter of a critical calendar date into degree-day model predictions to increase the accuracy of model predictions for emergence dates in solitary bees. Although our retrospective prediction about the advance in bee emergence corresponds to the results of several studies on phenological trends of different plant species, we suggest that more research has to be done to assess the impacts of climate warming on the synchronization in bee-plant interactions more accurately. / Solitäre Bienen aus gemäßigten Breiten müssen ihre Lebenszyklen vorteilhaften Umweltbedingungen und –ressourcen angleichen. Deshalb ist ein gutes Timing ihrer saisonalen Tätigkeit von höchster Relevanz. Die meisten Arten aus gemäßigten Breiten nutzen Temperatur als Trigger um ihre saisonale Aktivität zeitlich abzustimmen. Aus diesem Grund kann der Klimawandel die mutualistischen Interaktionen zwischen Bienen- und Pflanzenarten stören, falls steigende Temperaturen das Timing der Interaktionspartner unterschiedlich verändern. Das Ziel dieser Doktorarbeit war es, die Timing-Mechanismen von Frühlingsbienenarten zu untersuchen, sowie die resultierenden Fitnessfolgen, falls zeitliche Fehlabstimmungen zu ihren Wirtspflanzen eintreten sollten. In meinen Experimenten konzentrierte ich mich auf Frühlingsbienenarten der Gattung Osmia (Mauerbienen) und dabei vor allem auf zwei spezielle Arten, nämlich O. cornuta und O. bicornis (in meiner Studie, die ich im Kapitel IV meiner Doktorarbeit präsentiere, untersuchte ich zusätzlich noch eine dritte Bienenart: O. brevicornis). Kapitel II präsentiert eine Studie, in der ich verschiedene Trigger untersuchte, die solitäre Bienen nutzen um ihren Schlupfzeitpunkt im Frühjahr festzulegen. Dazu untersuchte ich in einem Klimakammerexperiment den Zusammenhang zwischen Überwinterungstemperaturen, Körpergröße, Körpergewicht und Schlupftag. Zusätzlich entwickelte ich ein einfaches mechanistisches Modell, welches mir ermöglichte, meine verschiedenen Ergebnisse in einem einheitlichen Rahmen zusammenzufügen. In Kombination mit den empirischen Daten deutet das Modell stark darauf hin, dass Bienen einen strategischen Ansatz verfolgen und genau an dem Tag schlüpfen, der für ihre individuelle Fitnesserwartung am sinnvollsten ist. Ich konnte zeigen, dass dieser gewählte Schlupftag einerseits temperaturabhängig ist, da wärmere Temperaturen den Gewichtverlust der Bienen während der Überwinterung steigern, was wiederum den optimalen Schlupftag auf einem früheren Zeitpunkt verschiebt, andererseits konnte ich ebenfalls zeigen, dass der optimale Schlupfzeitpunkt von der individuellen Körpergröße bzw. dem Körpergewicht der Biene abhängt, da diese ihren Schlupftag danach abstimmen. Meine Daten zeigen, dass es nicht reicht alleinig Temperatureffekte auf das Timing der solitären Bienen zu untersuchen, sondern dass wir ebenfalls die Körperkonditionen der Bienen beachten sollten, um die zeitliche Abstimmung des Bienenschlupfes besser verstehen zu können. In Kapitel III präsentiere ich eine Studie, in der ich den Temperatureinfluss auf den Schlupftermin solitärer Bienen detailreicher untersuchte. Dazu habe ich verschiedene Varianten von Temperatursummen-Modellen getestet, um Temperaturzeitreihen auf Schlupftermine zu beziehen. Die grundlegende Funktionsweise solcher Temperatursummen-Modelle ist, dass der Bienenschlupf auf den Tag prognostiziert wird an dem die Bienen eine bestimmte Menge an Temperatursummen aufsummiert haben. Ich konnte zeigen, dass Bienen Temperatursummen erst ab bestimmten Temperaturen bilden (ab circa 4°C bei O. cornuta und circa 7°C bei O. bicornis) und erst nach Erreichen eines bestimmten Kalendertages (circa 10.März bei O. cornuta und circa 28.März bei O. bicornis). Solch ein bestimmter Kalendertag, vor dessen Erreichen und unabhängig von der aktuellen Temperatur keine Temperatursummen gebildet werden, wird grundsätzlich recht selten verwendet und in Phänologie-Modellen zur Vorhersage des Bienenschlupfes, bis heute auch nur zwei Mal. Zusätzlich benutzte ich mein Modell, um rückwirkend den Bienenschlupf über die letzten Jahrzehnte vorherzusagen. Dazu wandte ich das Modell auf Langzeit-Temperaturdaten an, die von der regionalen Wetterstation in Würzburg aufgezeichnet wurden. Das Modell prognostizierte rückwirkend, dass im Verlauf der letzten 63 Jahre die Bienen ungefähr 4 Tage früher schlüpfen. In Kapitel IV präsentiere ich eine Studie, in der ich untersuchte, inwieweit zeitliche Fehlabstimmungen in Bienen-Pflanzen-Interaktionen die Fitness der solitären Bienen beeinflussen. Dazu führte ich ein Experiment mit großen Flugkäfigen durch, die als Mesokosmos dienten. Innerhalb jedes dieser Mesokosmen manipulierte ich das Angebot an Blüten um Bienen-Pflanzen-Interaktionen wahlweise zu synchronisieren oder zu desynchronisieren. Zusammengefasst konnte ich dabei aufzeigen, dass sogar kurze zeitliche Fehlabstimmungen von drei oder sechs Tagen bereits genügen (Bienen schlüpften zeitlich vor dem Erscheinen der Pflanzen) um bei den Bienen fatale Fitnessfolgen zu verursachen. Nichtsdestotrotz konnte ich bei den Bienen verschiedene Strategien erkennen, mit denen sie Auswirkungen auf ihre Fitness nach zeitlichen Fehlabstimmungen entgegenwirken wollten. Allerdings könnten diese Strategien zu sekundären Fitnessverlusten folgen da sie zu einem veränderten Geschlechterverhältnis oder einem stärkeren Prasitierungsgrad führen. Deshalb konnte ich zusammenfassend feststellen, dass nach zeitlichen Fehlabstimmungen zu den entsprechenden Wirtspflanzen, die Kompensationsstrategien der Bienen nicht ausreichen, um Fitnessverlusste zu minimieren. Im Falle des weiter voranschreitenden Klimawandel könnten die Fitnessverluste der Bienen nicht nur das momentane Bienensterben weiter verschärfen, sondern auch ihren Bestäubungsdienst an später blühenden Arten minimieren und dadurch Populationen von tierbestäubten Pflanzen beeinträchtigen. Zusammenfassend konnte ich zeigen, dass Frühlingsbienenarten anfällig für Klimawandel sind, da sie nach warmen Überwinterungstemperaturen früher schlüpfen und einen geringeren Fitnesszustand aufweisen. Da Frühlingsbienenarten bei der zeitlichen Abstimmung ihres Schlupftages nicht nur Überwinterungstemperaturen, sondern auch ihren individuellen Fitnesszustand beachten, könnte dies unterschiedliche Reaktionen innerhalb oder zwischen Bienenpopulationen auf den Klimawandel erklären. Dies könnte ebenfalls Folgen für Bienen-Pflanzen Interaktionen haben und das weitere Bestehen von Bienenpopulationen gefährden. Falls, durch den Klimawandel bedingt, Pflanzenarten ihre Phänologie nicht in Einklang mit der Phänologie der Bienen verschieben, dann könnten Bienen zeitliche Fehlabstimmungen mit ihren Wirtspflanzen erleben. Da Bienen keine einzige Kompensationsmaßnahme aufzeigen, die erfolgreich Fitnessverlusten entgegenwirken konnte, wären in einem solchen Fall die Folgen für Frühlingsbienenarten fatal. Darüber hinaus konnte ich feststellen, dass Frühlingsbienen einen bestimmten Starttag im Jahr beachten, vor dessen Erreichen sie keine Temperatursummen bilden, unabhängig von der aktuellen Temperatur. Ich schlage deshalb vor, dass weitere Studien ebenfalls einen solchen Starttag in Temperatursummen-Modelle einbauen sollten, um die Genauigkeit zur Berechnung des Bienenschlupfes weiter zu verbessern. Obwohl meine retrospektive Vorhersage zum verfrühten Bienenschlupf ziemlich genau den Ergebnissen von verschiedenen Studien zu den phänologischen Verschiebungen von Pflanzenarten entspricht, schlagen wir vor, dass zusätzliche Untersuchungen konzipiert werden müssen um präzisere Aussagen über die Folgen des Klimawandels auf die Synchronisation der Bienen-Pflanzen-Interaktionen liefern zu können.
92

Plant-pollinator Interactions in a Changing Climate

Forrest, Jessica 30 August 2011 (has links)
Climate change is shifting the seasonal timing of many biological events, and the possibility of non-parallel shifts in different taxa has raised concerns about phenological decoupling of interacting species. My thesis investigates interactions between climate, phenology, and pollination, using the plants and pollinators of Rocky Mountain meadows as a study system. Interannual variation in timing of snowmelt since the 1970s has been associated with changes in the assemblages of concurrently flowering species in these meadows, suggesting that plant species differ in their phenological responses to climate. Differences between plants and pollinators in responsiveness to changing climate could, in principle, cause early-flowering plants to flower too early in warm years, before pollinators are active. In fact, I found only transient evidence for pollinator deficits in one early-flowering species (Mertensia fusiformis), even in an early-snowmelt year. However, the assemblage of pollinators visiting M. fusiformis does change predictably over the season, with likely consequences for selection on floral morphology in years when pollen is limiting. Hence, early- and late-flowering populations may evolve in response to phenology of the pollinator community. Differences between plant and pollinator phenologies appear to be due to generally lower temperature thresholds for development in plants, combined with microclimate differences between the soil and the above-ground nests of some pollinators. Phenological decoupling between plants and pollinators seems possible but unlikely to be catastrophic, since many taxa possess adaptations to temporally variable environments. Nevertheless, for many species, adaptation to novel climates will entail evolutionary change, and species interactions can influence evolutionary trajectories. For species affected by increasing late-summer drought, earlier flowering may be advantageous. However, in laboratory experiments, bumble bees avoid rare, unfamiliar flower types, causing simulated plant populations to fail to adapt to changing conditions. Overall, my work emphasizes the importance of the interplay between species interactions and environmental change.
93

Plant-pollinator Interactions in a Changing Climate

Forrest, Jessica 30 August 2011 (has links)
Climate change is shifting the seasonal timing of many biological events, and the possibility of non-parallel shifts in different taxa has raised concerns about phenological decoupling of interacting species. My thesis investigates interactions between climate, phenology, and pollination, using the plants and pollinators of Rocky Mountain meadows as a study system. Interannual variation in timing of snowmelt since the 1970s has been associated with changes in the assemblages of concurrently flowering species in these meadows, suggesting that plant species differ in their phenological responses to climate. Differences between plants and pollinators in responsiveness to changing climate could, in principle, cause early-flowering plants to flower too early in warm years, before pollinators are active. In fact, I found only transient evidence for pollinator deficits in one early-flowering species (Mertensia fusiformis), even in an early-snowmelt year. However, the assemblage of pollinators visiting M. fusiformis does change predictably over the season, with likely consequences for selection on floral morphology in years when pollen is limiting. Hence, early- and late-flowering populations may evolve in response to phenology of the pollinator community. Differences between plant and pollinator phenologies appear to be due to generally lower temperature thresholds for development in plants, combined with microclimate differences between the soil and the above-ground nests of some pollinators. Phenological decoupling between plants and pollinators seems possible but unlikely to be catastrophic, since many taxa possess adaptations to temporally variable environments. Nevertheless, for many species, adaptation to novel climates will entail evolutionary change, and species interactions can influence evolutionary trajectories. For species affected by increasing late-summer drought, earlier flowering may be advantageous. However, in laboratory experiments, bumble bees avoid rare, unfamiliar flower types, causing simulated plant populations to fail to adapt to changing conditions. Overall, my work emphasizes the importance of the interplay between species interactions and environmental change.
94

ORGANIZATION OF A PLANT-POLLINATOR COMMUNITY IN A SEASONAL HABITAT (BEES, SOCIALITY, FORAGING).

Anderson, Linda Susan January 1984 (has links)
The foraging behavior of native solitary and primitively social bees was analyzed by identifying scopal pollen loads. In all species individual bees specialized on one pollen type during single foraging bouts. Generalized foraging behavior at the species level may result from switching pollens on sequential foraging bouts in individuals or from the individuals of a colony simultaneously gathering different pollens. Foraging behavior at the species level had a bimodal distribution, indicating a functional division between specialists and generalists. Though approximately 40% of the generalist species switched pollen preferences between years, no specialist species switched preferences between years. Generalist species have longer seasonal activity periods than specialists. All specialists were found in families (Andrenidae, Colletidae, Megachilidae) or subfamilies (Dufoureinae) in which most species are known to be strictly solitary. Only generalists were found in the subfamily Halictinae which has both social and solitary species. Seasonal variability in flower abundance and phenology was related to foraging preferences of bees. Solitary and primitively social bees, that are univoltine and cannot easily track between-year variation in resources, preferred species with simple flowers and low variability in flower abundance. Bumblebees, with greater behavioral flexibility than solitary bees, used the more abundant and variable flowers when they are available. Foraging behaviors observed in solitary and primitively social bees may result from selection to minimize uncertainty where floral resources are variable and unpredictable between years. The persistence of different foraging behaviors and social behaviors in a bee community may be maintained by the complementary costs and benefits of each behavior. Generalists have greater flexibility in responding to temporal variation, but this flexibility is obtained at the expense of less efficient use of individual floral resources. Specialists do not switch resources and may therefore have greater foraging efficiency, but they will be at a disadvantage when there is high year-to-year variability. Social species can retain both flexibility and efficiency if individual colony members specialize on different resources. However, social bees require a longer period to produce reproductives than do solitary bees, and may have lowered fecundity if the blooming season is unusually short.
95

A comparison of nitrogen excretory products of honey bees maintained on various protein sources

McNally, Joseph Bryan, 1937- January 1960 (has links)
No description available.
96

The Bees of Algonquin Park: A Study of their Distribution, their Community Guild Structure, and the Use of Various Sampling Techniques in Logged and Unlogged Hardwood Stands

Nardone, Erika 07 January 2013 (has links)
This study investigates the distribution and functional guild structure of the bee community in hardwood stands of Algonquin Provincial Park under different logging regimes, assessing both the role of different aspects of the habitat in affecting this distribution and structure, as well as the use of different sampling techniques. The distribution of bee individuals and species was most dependent on the abundance of raspberry (Rubus strigosus), an important floral and nesting resource. Also of importance were total floral resources, microclimate, and habitat heterogeneity. The functional guild structure of the bee community, which was relatively resilient to habitat variation, was related to a greater variety of factors, reflecting wide-ranging behaviours and requirements of different guilds. Malaise traps, pan traps and nets varied in their effectiveness at collecting different bee genera and a high percentage of species were collected only with one trap type. Malaise traps performed relatively poorly in forested environments, though very well in more disturbed, open habitats. Pan traps and nets performed better in forested environments. Trap nests were an inefficient sampling technique in forests, but were effective at collecting some species of cavity-nesting bees. These findings underline the importance of raspberry for bee communities of northern hardwood forests, and the importance of heterogeneity, both of habitat types and sampling techniques, to attain the highest species richness of bees.
97

Factors of Success in Beekeeping Development Projects and Their Application to South Africa’s Beekeeping Industry

Lee, Deirdre 01 January 2014 (has links)
Nearly every country in the world has its own history of beekeeping. From the Swiss leaf hive to the Kenyan top bar hive, the number of ways to keep bees is practically limitless. Such diversity allows for a unique opportunity in the field of development. Many development projects are denigrated for relying on the knowledge and generosity of “white saviors.” Many beekeeping projects are the brainchildren of well-meaning people in developed countries looking for a charitable outlet and attempting to use their “superior” knowledge to enlighten and improve the lives of those less fortunate. While these intentions may well be good, expertise in and understanding of local communities and cultures are invaluable to any development project.
98

Molecular detection and genetic manipulation of the Black Queen Cell Virus.

Benjeddou, Mongi January 2002 (has links)
The South African isolate of the Black Queen-Cell Virus (BQCV), a honeybee virus, was previously found to have an 8550 nucleotide genome excluding the poly(A) tail. Its genome contained two ORFs, a 5'-proximal ORF encoding a putative replicase protein and a 3'-proximal ORF encoding a capsid polyprotein.<br /> <br /> A reverse transcriptase PCR (RT -PCR) assay was developed for the detection of BQCV and acute bee-paralysis virus (ABPV). Complete genomes sequences w ere used to design unique PCR primers within a l-kb region from the 3' end of both genomes to amplify a fragment of 70.0 bp from BQCV and 900 bp from ABPV. The combined guanidinium thiocyanate and silica membrane method was used to extract total RNA from samples of healthy and laboratory-infected bee pupae. In a blind test, RT-PCR successfully identified the samples containing BQCV and ABPV. Sensitivities were of the order of 130 genome equivalents of purified BQCV and 1600 genome equivalents of ABPV.
99

Pollination of almond (Prunus dulcis (Mill.) D.A. Webb) /

Hill, Stuart John. January 1987 (has links) (PDF)
Thesis (M. Ag. Sci)--University of Adelaide, 1987. / Includes bibliographical references (leaves 256-323).
100

Implications for the use of Osmia cornifrons (Hymenoptera: Megachilidae) as pollinators

White, Joseph Brent. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains vi, 50 p. : ill. (some col.). Includes abstract. Includes bibliographical references.

Page generated in 0.0292 seconds