• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 301
  • 167
  • 149
  • 42
  • 30
  • 27
  • 25
  • 17
  • 13
  • 8
  • 8
  • 6
  • 5
  • 4
  • 3
  • Tagged with
  • 933
  • 156
  • 119
  • 109
  • 105
  • 98
  • 95
  • 93
  • 91
  • 89
  • 89
  • 77
  • 73
  • 67
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Response of Reinforced Concrete Reservoir Walls Subjected to Blast Loading

Fan, Jin January 2014 (has links)
Recent events including deliberate terrorist attacks and accidental explosions have highlighted the need for comprehensive research in the area of structural response to blast loading. Research in this area has recently received significant attention by the civil engineering community. Reinforced Concrete (RC) water reservoir tanks are an integral part of the critical infrastructure network of urban centers and are vulnerable to blast loading. However, there is a lack of research and knowledge on the performance of RC reservoir walls under blast loading. The objective of this research study is to experimentally investigate the performance of reinforced concrete reservoir walls subjected to blast loading and to analyze the structural response. This study provides experimental test data on the performance of reinforced concrete reservoir walls under blast loading and complementary analytical predictions using the Singe-Degree-Of-Freedom (SDOF) analysis method. The reservoir walls in this study were designed according to the water volume capacity using the Portland Cement Association (PCA 1993) methodology. The design was validated using software SAP 2000. The experimental program involved the construction and simulated blast testing of two RC reservoir wall specimens with different support conditions: (1) two opposite lateral edges fixed, bottom edge pinned and top edge free; and (2) two opposite lateral edges fixed, and bottom and top edges free. The first boundary condition was intended to promote two-way bending action, while the second was dominated by one-way bending. The two specimens were each subjected to a total of six consecutive incrementally increasing blast tests. The experimental program was conducted in the shock tube testing facility that is housed in the University of Ottawa. Wall displacements, reinforcement strains, and reflected pressures and impulses were measured during testing. Analytical calculations were conducted using the equivalent SDOF method to simulate the dynamic response of the RC reservoir wall specimens under different blast loadings. Published tables, charts and coefficients contained in Biggs (1964) and UFC 3-340-02 (2008) were adopted in the equivalent SDOF calculations. The analytical results were compared against the ii experimental data. The SDOF method predicted smaller displacements than those recorded during testing. The approximate nature of the parameters and tables used in the equivalent SDOF calculations contributed to the discrepancy between the analytical and experimental results. Furthermore, assumptions regarding the support conditions and neglecting residual damage from previous blast tests contributed to the underestimation of the displacements.
182

Vliv výrobních parametrů na plasticitu konstrukční oceli / The effect of production parameters on the plasticity of structural steel

Brabec, Martin January 2020 (has links)
The master thesis deals with the influence of heat treatment and storage time on microstructure and mechanical properties of 26MnB5 steel, which is used in the production of tubular components in the quenched and tempered state. The objective was to increase the plasticity of the steel by the definition of new process parameters of the induction heat treatment line. New tempering diagrams of 26MnB5 steel for two various speeds of the heat treatment line were established and used to determine new tempering temperature and speed of the heat treatment line. Observation of the influence of storage time on mechanical properties of the steel did not reveal that it is liable to ageing.
183

Návrh výroby části otvíráku / Manufacturing of the part of a wine bottle opener

Kyselá, Lenka January 2020 (has links)
Diploma thesis introduces the design of a functional part of a wine opener, focusing on simplicity and effectivity of the manufacturing process with the use of progressive stamping tool. The part will be made by technology of progressive cutting and bending. For the production of the specified part stainless steel coil marked as 17 241.4 will be used This material is suitable for the use in commercial gastronomy thanks to its qualities. Also in this thesis there are technical calculations, suggestios for of optimal tools, economic calculations, and technical-economic evaluation of the production of the specified part.
184

Zakružovačka na Hardox / Bending roll machine for Hardox

Budík, Tomáš January 2014 (has links)
This work describes the design of a dedicated three-rolls hydraulic bending for Hardox 500 without the possibility of bending sheet metal for the manufacture of pipes. The work will analyze the problem of proposed three-rolls bending, bending technology and creating of the pre-bending, the design of the adjusting hydraulic servo-cylinder, planetary gearboxes with hydraulic motors to drive the bottom rollers, a partial draft of the hydraulic circuit and the complete frame structure of bending machine with its covers.
185

Développement d’un modèle de stabilité des barres à section tubulaire comprimées fléchies sensibles aux effets du second ordre / Development of a model of stability for steel hollow tubular section beam-columns sensitive to second order effects

Mercier, Charlotte 24 October 2019 (has links)
Cette thèse s’inscrit dans une démarche d’amélioration des connaissances des instabilités des éléments comprimés et fléchis sensibles aux effets du second ordre. Il s’agit de traiter la prise en compte des imperfections initiales dans l’analyse de la structure et d’adapter les critères actuels de vérification pour les structures tubulaires de type échafaudage. Les formulations existantes, proposées dans la littérature et les codes de calculs, sont souvent issues d’hypothèses, et conduisent à des incohérences entre les critères de vérification en section, et les critères de vérification en instabilité. L’approche développée traite l’interaction entre la résistance en section et les phénomènes d’instabilités, et inclut l’influence des imperfections initiales. Ces effets seront, dans la mesure du possible, découplés. À ce titre, une méthode a été conçue pour permettre la définition des imperfections initiales d’une structure, de manière à être la plus précise possible. Cette méthode, basée sur la définition d’une imperfection unique, d’allure identique à la déformée critique du mode de flambement prépondérant, est une méthode précise, entièrement définie permettant de tenir compte des caractéristiques géométriques, des caractéristiques mécaniques intrinsèques, des conditions aux limites et de la forme du chargement, dans la définition de l’imperfection initiale unique d’une structure. Une campagne d’essai a été réalisée en collaboration avec le SFECE, visant à analyser le comportement expérimental au flambement de sections tubulaires formées à froid. Des essais de flambement sur des échelles d’échafaudage, provenant de divers fournisseurs européens, ont été effectués. Une étude statistique des résultats expérimentaux a permis de mettre en évidence que le facteur d’imperfection actuellement défini pour les sections tubulaires formées à froid est bien trop pénalisant à l’égard des sections usitées dans le domaine des échafaudages. Afin de répondre à la problématique, de nouveaux critères de vérification en instabilité ont également été établis en utilisant une approche similaire à celle d’Ayrton-Perry. Ces nouveaux critères permettent de s’affranchir de la modélisation des imperfections initiales tout en offrant une estimation sûre et précise du facteur de sollicitation d’une structure. Des études comparatives ont été menées de manière à s’assurer de la sécurité des formulations proposées par rapport aux critères de vérification en section de la norme actuelle. / This thesis is part of an effort to improve knowledge of the instabilities of beam-columns sensitive to second-order effects. The works deal with the means to take into account the initial imperfections in the structural analysis and to adapt the current verification criteria for tubular section structures, such as scaffold structures. The existing formulations, proposed in the literature and calculation codes, are often based on hypotheses, and thus lead to inconsistencies between, on the one hand, the verification criteria in section, and on the other hand, the verification criteria in instability. The developed approach takes into account the interaction between section resistance and instability phenomena, and includes the influence of initial imperfections (initial defect of aplomb, lack of straightness, residual stresses). As far as possible, these effects will be decoupled. As such, a method has been developed to allow the definition of initial imperfections of a structure, to be as accurate as possible. This method, based on the definition of a single imperfection, identical in appearance to the shape of the predominant critical buckling mode, is a precise, fully defined method to take into account the geometric characteristics, intrinsic mechanical characteristics, limits and the form of loading, in the definition of the initial imperfections of a structure. A test campaign was carried out in collaboration with the French Syndicate of Scaffolding, Formwork and Shoring (SFECE), aiming to analyze the experimental behavior of buckling of cold-formed tubular sections. Nine buckling tests on scaffold ladders, from various European suppliers, have been carried out. A statistical study of the experimental results has made it possible to highlight that the imperfection factor currently defined for the cold-formed tubular sections is far too penalizing for the sections used in the field of scaffolds. In order to respond to the problem, new instability criteria have also been established using a similar approach to that of Ayrton-Perry. These new criteria make it possible to free ourselves from the modeling of initial imperfections while offering a safe and accurate estimate of the stress factor of a structure. A comparative study was conducted in order to ensure the safety of the proposed formulations as regards the section verification criteria of the NF EN 1993-1-1 current standard.
186

[en] A COMPARATIVE STUDY OF INTEGRABLE SYSTEMS ON THE SPACES OF POLYGONS, MATRICES AND BUNDLES / [pt] ESTUDO COMPARATIVO DOS SISTEMAS INTEGRÁVEIS NOS ESPAÇOS DE POLÍGONOS, MATRIZES E FIBRADOS

FABIOLA VALERIA CORDERO URIONA 22 November 2021 (has links)
[pt] O espaço de polígonos de um grupo de Lie é definido como a redução simplética em um produto de órbitas pela ação coadjunta. Neste trabalho comparamos alguns sistemas integráveis definidos em espaços de módulos de polígonos, matrizes e fibrados, tais como o sistema de Kapovich–Millson, o modelo de Gaudin e a aplicação de Hitchin. / [en] The Polygon Space of a Lie group is defined as the symplectic reduction of a product of orbits by the coadjoint action. In this work we compare integrable systems defined on different moduli spaces of polygons, matrices and bundles, such as Kapovich–Millson s system, Gaudin s model and the Hitchin s map.
187

Estimation of Static Stiffnesses from Free Boundary Dynamic (FRF) Measurements

Pasha, Hasan G. January 2014 (has links)
No description available.
188

The length effect on Norway spruce boards : An investigation on indicating properties based on axial dynamic and edgewise bending MOEs

Engström, Anders, Sumbasacu, Toma January 2015 (has links)
When using timber for construction purposes it is important to know its strength. One way to do this is by sorting the boards into strength classes that are defined by European standards.  A commonly used method for strength grading is based on dynamic excitation in the longitudinal direction of the board to obtain an average dynamic longitudinal modulus of elasticity (MOE). This in turn correlates with the bending strength of the board in such a way that it can be used as an indicating property (IP) to bending strength. The use of MOE as an IP has proven to give the highest coefficient of determination (R2) to both bending and tensile strength in boards. Through the research described in this thesis, one might find that both reducing the length of a board to half its initial length and by removing the part containing the lowest local MOE in edgewise bending provided similar results, the axial dynamic MOE remaining within a 1% tolerance whereas the lowest IP based on local MOE in edgewise bending increased by 6–7%.
189

Behavior of concrete columns under various confinement effects

Abd El Fattah, Ahmed Mohsen January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Hayder Rasheed / The analysis of concrete columns using unconfined concrete models is a well established practice. On the other hand, prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear analysis. Modern codes and standards are introducing the need to perform extreme event analysis. There has been a number of studies that focused on the analysis and testing of concentric columns or cylinders. This case has the highest confinement utilization since the entire section is under confined compression. On the other hand, the augmentation of compressive strength and ductility due to full axial confinement is not applicable to pure bending and combined bending and axial load cases simply because the area of effective confined concrete in compression is reduced. The higher eccentricity causes smaller confined concrete region in compression yielding smaller increase in strength and ductility of concrete. Accordingly, the ultimate confined strength is gradually reduced from the fully confined value fcc (at zero eccentricity) to the unconfined value f’c (at infinite eccentricity) as a function of the compression area to total area ratio. The higher the eccentricity the smaller the confined concrete compression zone. This paradigm is used to implement adaptive eccentric model utilizing the well known Mander Model and Lam and Teng Model. Generalization of the moment of area approach is utilized based on proportional loading, finite layer procedure and the secant stiffness approach, in an iterative incremental numerical model to achieve equilibrium points of P- and M- response up to failure. This numerical analysis is adaptod to asses the confining effect in circular cross sectional columns confined with FRP and conventional lateral steel together; concrete filled steel tube (CFST) circular columns and rectangular columns confined with conventional lateral steel. This model is validated against experimental data found in literature. The comparison shows good correlation. Finally computer software is developed based on the non-linear numerical analysis. The software is equipped with an elegant graphics interface that assimilates input data, detail drawings, capacity diagrams and demand point mapping in a single sheet. Options for preliminary design, section and reinforcement selection are seamlessly integrated as well. The software generates 2D interaction diagrams for circular columns, 3D failure surface for rectangular columns and allows the user to determine the 2D interaction diagrams for any angle  between the x-axis and the resultant moment. Improvements to KDOT Bridge Design Manual using this software with reference to AASHTO LRFD are made. This study is limited to stub columns.
190

Evaluation of cracking resistance of Superpave mixtures in Kansas

Aziz, Syeda Rubaiyat January 1900 (has links)
Master of Science / Department of Civil Engineering / Mustaque Hossain / Reclaimed Asphalt Pavement (RAP) is a useful alternative to virgin aggregates in hot-mix asphalt (HMA) as it reduces cost, conserves energy, and enables reuse of existing asphalt pavement. However, use of higher percentage of RAP sometimes leads to drier mixes that are often susceptible to early cracking. In this study, cracking resistance of Superpave mixtures with varying asphalt and RAP contents were investigated. HMA specimens were prepared based on Superpave mix design criteria for 12.5-mm (1/2-inch) nominal maximum aggregate size (NMAS). Specimens were compacted using the Superpave gyratory compactor. Static and repeated semi-circular bending (SCB) tests and Texas overlay tests (OT) (TEX-248-F) were performed in order to evaluate cracking resistance of Superpave mixtures containing three different asphalt contents (5.2%, 4.9%, and 4.6%) and three RAP percentages (20%, 30%, and 40%) from two distinct sources. Results from both crack tests showed that, with decreased asphalt content, cracking propensity increases. In general, higher percentage of RAP decreases cracking resistance. Statistical analysis of the results indicated a strong positive correlation between the asphalt film thickness and the number of load cycles before failure. Comparison of mean test results suggested that the Texas overlay test could do better evaluation of cracking resistance than the R-SCB test. This study was limited to mixtures with two sources of RAP. Because of such limitations and conflicting results from these RAP sources, a general conclusion regarding the minimum binder and maximum RAP contents without compromising cracking resistance could not be made. However, separate conclusions were drawn depending upon the characteristics of the RAP source.

Page generated in 0.0784 seconds