• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 1
  • Tagged with
  • 23
  • 23
  • 22
  • 21
  • 16
  • 15
  • 15
  • 15
  • 8
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Number Restrictions on Complex Roles in Description Logics

Baader, Franz, Sattler, Ulrike 18 May 2022 (has links)
Number restrictions are concept constructors that are available in almost all implemented description logic systems. However, even though there has lately been considerable effort on integrating expressive role constructors into description logics, the roles that may occur in number restrictions are usually of a very restricted type. Until now, only languages with number restrictions on atomic roles and inversion of atomic roles, or with number restrictions on intersection of atomic roles have been investigated in detail. In the present paper, we increase the expressive power of description languages by allowing for more complex roles in number restrictions. As role constructors, we consider composition of roles (which will be present in all our languages), and intersection, union and inversion of roles in different combinations. We will present one decidability result (for the basic language that extends ALC by number restrictions on roles with composition), and three undecidability results for three different extensions of the basic language.
12

Database-Inspired Reasoning Problems in Description Logics With Path Expressions

Bednarczyk, Bartosz 19 July 2024 (has links)
Formal ontologies are of significant importance in artificial intelligence, playing a central role in the Semantic Web, ontology-based information integration, or peer-to-peer data management. In such scenarios, an especially prominent role is played by description logics (DLs) – a robust family of logical formalisms used to describe ontologies and serving as the logical underpinning of contemporary standardised ontology languages. To put knowledge bases to full use as core part of intelligent information systems, much attention is being devoted to the area of ontology-based data-access, with conjunctive queries and their generalisations such as positive conjunctive two-way regular path queries being employed as a fundamental querying formalism. The most expressive exemplars of description logics feature advanced constructors for roles and path expressions. Among the most powerful knowledge representation formalisms on the verge of decidability, are the DLs from the Z family. For its most expressive proponent, ZOIQ (a.k.a. ALCHbSelf reg OIQ), featuring nominals (O), role inverses (I), and number restrictions (Q), querying is undecidable and even decidability of knowledge-base satisfiability is open, owing to the intricate interplay of the three mentioned features. Restricting the interaction of O, I, and Q however (or excluding one of the features altogether) leads to beneficial model-theoretic properties, which give rise to upper bounds of ExpTime for knowledge-base satisfiability and 2ExpTime for querying. Aiming for better understanding of the “expressive power versus computational complexity” trade-off for the Z family of DLs, we provide a more fine-grained complexity analysis for the query entailment problem over ontologies. In the thesis we focus on tame fragments of ZOIQ, namely the fragments in which either one the three features from {I, O, Q} is dropped or the class of models is restricted to the so-called quasi-forests. We employ the query languages ranging from (unions of) conjunctive queries ((U)CQs) to positive two-way regular path queries (P2RPQs). We mostly follow the classical semantics of entailment, but we also provide several results in the “finite-model” scenario. The most important results of the thesis are summarised below. 1. We provide a complete classification of the complexity of the query entailment problem (for various query languages discussed above) for tamed fragments of ZOIQ under the classical semantics. This involves several new ingredients such as: (i) a uniform exponential-time algorithm based on Lutz’s spoiler technique for the entailment of unions of conjunctive queries for ALCHbreg, (ii) new lower bounds for (rooted and unrooted) conjunctive query entailment over ALCSelf ontologies, and (iii) a novel reduction from the entailment of P2RPQs to the satisfiability problem for tamed ZOIQ, yielding a uniform 2ExpTime upper bound for all the considered logics. As a preliminary step towards lifting the above results to the realm of data complexity, we establish that the satisfiability of tamed ZOIQ is NP-complete. 2. Under the finite model semantics, we focus on UCQs only. With the proviso that the finite satisfiability problem for ZIQ is ExpTime-complete, we also provide a complete picture of the complexity of the query entailment problems. The key insight is that ZOI and ZOQ are finitely controllable. 3. We conclude the thesis by investigating the decidability border of further extensions of the Z family of DLs. Our goal is to understand whether the class of regular languages present in path expressions in Z is maximal for guaranteeing decidability of the underlying logic. We provide a series of undecidability results involving simple, non-regular languages (a subclass of visibly pushdown languages). Our proofs rely on well-established model- and graph-theoretic definitions. What is more, most of them generalise (in a uniform way) and solidify multiple results known by the DL community. Our proofs are also easily adjustable to freshly defined logics, without the need to reproduce nearly-identical proofs.
13

Fuzzy Description Logics with General Concept Inclusions

Borgwardt, Stefan 23 May 2014 (has links)
Description logics (DLs) are used to represent knowledge of an application domain and provide standard reasoning services to infer consequences of this knowledge. However, classical DLs are not suited to represent vagueness in the description of the knowledge. We consider a combination of DLs and Fuzzy Logics to address this task. In particular, we consider the t-norm-based semantics for fuzzy DLs introduced by Hájek in 2005. Since then, many tableau algorithms have been developed for reasoning in fuzzy DLs. Another popular approach is to reduce fuzzy ontologies to classical ones and use existing highly optimized classical reasoners to deal with them. However, a systematic study of the computational complexity of the different reasoning problems is so far missing from the literature on fuzzy DLs. Recently, some of the developed tableau algorithms have been shown to be incorrect in the presence of general concept inclusion axioms (GCIs). In some fuzzy DLs, reasoning with GCIs has even turned out to be undecidable. This work provides a rigorous analysis of the boundary between decidable and undecidable reasoning problems in t-norm-based fuzzy DLs, in particular for GCIs. Existing undecidability proofs are extended to cover large classes of fuzzy DLs, and decidability is shown for most of the remaining logics considered here. Additionally, the computational complexity of reasoning in fuzzy DLs with semantics based on finite lattices is analyzed. For most decidability results, tight complexity bounds can be derived.
14

Learning Terminological Knowledge with High Confidence from Erroneous Data

Borchmann, Daniel 09 September 2014 (has links)
Description logics knowledge bases are a popular approach to represent terminological and assertional knowledge suitable for computers to work with. Despite that, the practicality of description logics is impaired by the difficulties one has to overcome to construct such knowledge bases. Previous work has addressed this issue by providing methods to learn valid terminological knowledge from data, making use of ideas from formal concept analysis. A basic assumption here is that the data is free of errors, an assumption that can in general not be made for practical applications. This thesis presents extensions of these results that allow to handle errors in the data. For this, knowledge that is "almost valid" in the data is retrieved, where the notion of "almost valid" is formalized using the notion of confidence from data mining. This thesis presents two algorithms which achieve this retrieval. The first algorithm just extracts all almost valid knowledge from the data, while the second algorithm utilizes expert interaction to distinguish errors from rare but valid counterexamples.
15

Action, Time and Space in Description Logics

Milicic, Maja 19 June 2008 (has links)
Description Logics (DLs) are a family of logic-based knowledge representation (KR) formalisms designed to represent and reason about static conceptual knowledge in a semantically well-understood way. On the other hand, standard action formalisms are KR formalisms based on classical logic designed to model and reason about dynamic systems. The largest part of the present work is dedicated to integrating DLs with action formalisms, with the main goal of obtaining decidable action formalisms with an expressiveness significantly beyond propositional. To this end, we offer DL-tailored solutions to the frame and ramification problem. One of the main technical results is that standard reasoning problems about actions (executability and projection), as well as the plan existence problem are decidable if one restricts the logic for describing action pre- and post-conditions and the state of the world to decidable Description Logics. A smaller part of the work is related to decidable extensions of Description Logics with concrete datatypes, most importantly with those allowing to refer to the notions of space and time.
16

Computing Least Common Subsumer in Description Logics with Existential Restrictions

Baader, Franz, Küsters, Ralf, Molitor, Ralf 20 May 2022 (has links)
Computing the least common subsumer (lcs) is an inference task that can be used to support the \bottom-up' construction of knowledge bases for KR systems based on description logics. Previous work on how to compute the lcs has concentrated on description logics that allow for universal value restrictions, but not for existential restrictions. The main new contribution of this paper is the treatment of description logics with existential restrictions. More precisely, we show that, for the description logic ALE (which allows for conjunction, universal value restrictions, existential restrictions, negation of atomic concepts, as well as the top and the bottom concept), the lcs always exists and can efiectively be computed. Our approach for computing the lcs is based on an appropriate representation of concept descriptions by certain trees, and a characterization of subsumption by homomorphisms between these trees. The lcs operation then corresponds to the product operation on trees. / An abridged version of this technical report is published in the Proceedings of IJCAI'99.
17

To and Fro Between Tableaus and Automata for Description Logics

Hladik, Jan 31 January 2008 (has links) (PDF)
Beschreibungslogiken (Description logics, DLs) sind eine Klasse von Wissensrepraesentationsformalismen mit wohldefinierter, logik-basierter Semantik und entscheidbaren Schlussfolgerungsproblemen, wie z.B. dem Erfuellbarkeitsproblem. Zwei wichtige Entscheidungsverfahren fuer das Erfuellbarkeitsproblem von DL-Ausdruecken sind Tableau- und Automaten-basierte Algorithmen. Diese haben aufgrund ihrer unterschiedlichen Arbeitsweise komplementaere Eigenschaften: Tableau-Algorithmen eignen sich fuer Implementierungen und fuer den Nachweis von PSPACE- und NEXPTIME-Resultaten, waehrend Automaten sich besonders fuer EXPTIME-Resultate anbieten. Zudem ermoeglichen sie eine vom Standpunkt der Theorie aus elegantere Handhabung von unendlichen Strukturen, eignen sich aber wesentlich schlechter fuer eine Implementierung. Ziel der Dissertation ist es, die Gruende fuer diese Unterschiede zu analysieren und Moeglichkeiten aufzuzeigen, wie Eigenschaften von einem Ansatz auf den anderen uebertragen werden koennen, um so die positiven Eigenschaften von beiden Ansaetzen miteinander zu verbinden. Unter Anderem werden Methoden entwickelt, mit Hilfe von Automaten PSPACE-Resultate zu zeigen, und von einem Tableau-Algorithmus automatisch ein EXPTIME-Resultat abzuleiten. / Description Logics (DLs) are a family of knowledge representation languages with well-defined logic-based semantics and decidable inference problems, e.g. satisfiability. Two of the most widely used decision procedures for the satisfiability problem are tableau- and automata-based algorithms. Due to their different operation, these two classes have complementary properties: tableau algorithms are well-suited for implementation and for showing PSPACE and NEXPTIME complexity results, whereas automata algorithms are particularly useful for showing EXPTIME results. Additionally, they allow for an elegant handling of infinite structures, but they are not suited for implementation. The aim of this thesis is to analyse the reasons for these differences and to find ways of transferring properties between the two approaches in order to reconcile the positive properties of both. For this purpose, we develop methods that enable us to show PSPACE results with the help of automata and to automatically derive an EXPTIME result from a tableau algorithm.
18

To and Fro Between Tableaus and Automata for Description Logics

Hladik, Jan 14 November 2007 (has links)
Beschreibungslogiken (Description logics, DLs) sind eine Klasse von Wissensrepraesentationsformalismen mit wohldefinierter, logik-basierter Semantik und entscheidbaren Schlussfolgerungsproblemen, wie z.B. dem Erfuellbarkeitsproblem. Zwei wichtige Entscheidungsverfahren fuer das Erfuellbarkeitsproblem von DL-Ausdruecken sind Tableau- und Automaten-basierte Algorithmen. Diese haben aufgrund ihrer unterschiedlichen Arbeitsweise komplementaere Eigenschaften: Tableau-Algorithmen eignen sich fuer Implementierungen und fuer den Nachweis von PSPACE- und NEXPTIME-Resultaten, waehrend Automaten sich besonders fuer EXPTIME-Resultate anbieten. Zudem ermoeglichen sie eine vom Standpunkt der Theorie aus elegantere Handhabung von unendlichen Strukturen, eignen sich aber wesentlich schlechter fuer eine Implementierung. Ziel der Dissertation ist es, die Gruende fuer diese Unterschiede zu analysieren und Moeglichkeiten aufzuzeigen, wie Eigenschaften von einem Ansatz auf den anderen uebertragen werden koennen, um so die positiven Eigenschaften von beiden Ansaetzen miteinander zu verbinden. Unter Anderem werden Methoden entwickelt, mit Hilfe von Automaten PSPACE-Resultate zu zeigen, und von einem Tableau-Algorithmus automatisch ein EXPTIME-Resultat abzuleiten. / Description Logics (DLs) are a family of knowledge representation languages with well-defined logic-based semantics and decidable inference problems, e.g. satisfiability. Two of the most widely used decision procedures for the satisfiability problem are tableau- and automata-based algorithms. Due to their different operation, these two classes have complementary properties: tableau algorithms are well-suited for implementation and for showing PSPACE and NEXPTIME complexity results, whereas automata algorithms are particularly useful for showing EXPTIME results. Additionally, they allow for an elegant handling of infinite structures, but they are not suited for implementation. The aim of this thesis is to analyse the reasons for these differences and to find ways of transferring properties between the two approaches in order to reconcile the positive properties of both. For this purpose, we develop methods that enable us to show PSPACE results with the help of automata and to automatically derive an EXPTIME result from a tableau algorithm.
19

Mixing Description Logics in Privacy-Preserving Ontology Publishing

Baader, Franz, Nuradiansyah, Adrian 30 July 2021 (has links)
In previous work, we have investigated privacy-preserving publishing of Description Logic (DL) ontologies in a setting where the knowledge about individuals to be published is an EL instance store, and both the privacy policy and the possible background knowledge of an attacker are represented by concepts of the DL EL. We have introduced the notions of compliance of a concept with a policy and of safety of a concept for a policy, and have shown how, in the context mentioned above, optimal compliant (safe) generalizations of a given EL concept can be computed. In the present paper, we consider a modified setting where we assume that the background knowledge of the attacker is given by a DL different from the one in which the knowledge to be published and the safety policies are formulated. In particular, we investigate the situations where the attacker’s knowledge is given by an FL0 or an FLE concept. In both cases, we show how optimal safe generalizations can be computed. Whereas the complexity of this computation is the same (ExpTime) as in our previous results for the case of FL0, it turns out to be actually lower (polynomial) for the more expressive DL FLE.
20

On the Relation between Conceptual Graphs and Description Logics

Baader, Franz, Molitor, Ralf, Tobies, Stefan 20 May 2022 (has links)
Aus der Einleitung: 'Conceptual graphs (CGs) are an expressive formalism for representing knowledge about an application domain in a graphical way. Since CGs can express all of first-order predicate logic (FO), they can also be seen as a graphical notation for FO formulae. In knowledge representation, one is usually not only interested in representing knowledge, one also wants to reason about the represented knowledge. For CGs, one is, for example, interested in validity of a given graph, and in the question whether one graph subsumes another one. Because of the expressiveness of the CG formalism, these reasoning problems are undecidable for general CGs. In the literature [Sow84, Wer95, KS97] one can find complete calculi for validity of CGs, but implementations of these calculi have the same problems as theorem provers for FO: they may not terminate for formulae that are not valid, and they are very ineficient. To overcome this problem, one can either employ incomplete reasoners, or try to find decidable (or even tractable) fragments of the formalism. This paper investigates the second alternative. The most prominent decidable fragment of CGs is the class of simple conceptual graphs (SGs), which corresponds to the conjunctive, positive, and existential fragment of FO (i.e., existentially quantified conjunctions of atoms). Even for this simple fragment, however, subsumption is still an NP-complete problem [CM92]. SGs that are trees provide for a tractable fragment of SGs, i.e., a class of simple conceptual graphs for which subsumption can be decided in polynomial time [MC93]. In this report, we will identify a tractable fragment of SGs that is larger than the class of trees. Instead of trying to prove new decidability or tractability results for CGs from scratch, our idea was to transfer decidability results from description logics [DLNN97, DLNS96] to CGs. The goal was to obtain a \natural' sub-class of the class of all CGs in the sense that, on the one hand, this sub-class is defined directly by syntactic restrictions on the graphs, and not by conditions on the first-order formulae obtained by translating CGs into FO, and, on the other hand, is in some sense equivalent to a more or less expressive description logic. Although description logics (DLs) and CGs are employed in very similar applications (e.g., for representing the semantics of natural language sentences), it turned out that these two formalisms are quite different for several reasons: (1) conceptual graphs are interpreted as closed FO formulae, whereas DL concept descriptions are interpreted by formulae with one free variable; (2) DLs do not allow for relations of arity > 2 ; (3) SGs are interpreted by existential sentences, whereas almost all DLs considered in the literature allow for universal quantification; (4) because DLs use a variable-free syntax, certain identifications of variables expressed by cycles in SGs and by co-reference links in CGs cannot be expressed in DLs. As a consequence of these differences, we could not identify a natural fragment of CGs corresponding to an expressive DL whose decidability was already shown in the literature. We could, however, obtain a new tractability result for a DL corresponding to SGs that are trees. This correspondence result strictly extends the one in [CF98]. In addition, we have extended the tractability result from SGs that are trees to SGs that can be transformed into trees using a certain \cycle-cutting' operation. The report is structured as follows. We first introduce the description logic for which we will identify a subclass of equivalent SGs. In Section 3, we recall basic definitions and results on SGs. Thereafter, we introduce a syntactical variant of SGs which allows for directly encoding the support into the graphs (Section 4.1). In order to formalize the equivalence between DLs and SGs, we have to consider SGs with one distinguished node called root (Section 4.2). In Section 5, we finally identify a class of SGs corresponding to a DL that is a strict extension of the DL considered in [CF98].

Page generated in 0.1037 seconds