• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efeito in vitro e in vivo da β-alanina sobre alguns parâmetros de estresse oxidativo em córtex cerebral e cerebelo de ratos jovens

Gemelli, Tanise January 2012 (has links)
β–alanina é um β-aminoácido derivado da degradação da pirimidina uracila. Em altas concentrações desenvolve uma desordem muito rara da via de degradação das pirimidinas, conhecida como β–alaninemia. O acúmulo do β–aminoácido pode causar consequências bioquímicas como: depleção dos níveis de taurina, aumento de espécies reativas e excreção aumentada de GABA. Essas alterações levam a um distúrbio no desenvolvimento neurológico, contribuindo para a patologia da doença. A β–alanina também é utilzada como suplemento nutricional por atletas visando melhor desempenho físico. Em nosso estudo avaliamos o efeito in vitro e in vivo da β–alanina sobre alguns parâmetros de estresse oxidativo em córtex cerebral e cerebelo de ratos Wistar de 21 dias de idade. Os animais receberam três injeções subcutâneas de β–alanina (300 mg/Kg de peso corporal) e os controles receberam o mesmo volume de solução salina (NaCl 0.85%) em intervalos de três horas. Nos experimentos in vitro verificamos a influência de diferentes concentrações de β–alanina (0,5 e 1.0 mM), onde observamos que o β–aminoácido possui capacidade de alterar a homeostasia das enzimas antioxidantes CAT e SOD, pois em ambos tecidos estudados a atividades da CAT foi inibida e da SOD aumentada na concentração mais alta (1,0 mM). Verificamos que a β–alanina in vitro diminui a oxidação do DCFH em cerebelo e aumenta o conteúdo total de GSH em cortéx cerebral, não alterando os outros parâmetros analisados, entretanto, não foi o observado na administração aguda de β–alanina. Nos experimentos in vivo observamos que o DCFH juntamente com o conteúdo total de tióis aumentaram nos dois tecidos estudados. Não observamos diferença significativa quanto aos níveis de GSH e TBARS. O mecanismo de ação da β–alanina sobre a atividade das enzimas antioxidantes foi diferente nos dois experimentos, pois no modelo agudo a atividade da CAT aumentou, no entanto, a atividade da SOD foi inibida pela β–alanina em cortéx cerebral e cerebelo. Portanto, observamos que a β–alanina altera a atividade das enzimas antioxidantes, aumentando com isso o conteúdo de espécies reativas e gerando possivelmente estresse oxidativo. Esses achados podem contribuir em partes com as alterações neurológicas encontrada em pacientes com β–alaninemia. Além disso, os possíveis efeitos secundários da suplementação nutricional de β-alanina necessitam de mais atenção. / β–alanine is an β-amino acid derived from the degradation of pyrimidine uracil. In high concentrations develops a very rare disorder of pyrimidine degradation pathway, known as β-alaninemia. The accumulation of β-amino acid can cause biochemical consequences such as: depletion of taurine levels, increase of reactive species and increased excretion of GABA. These conditions may cause neurological disturbances, contributing to the pathology of the disease. The β-alanine is also used as a nutritional supplement by athletes seeking to improve physical performance. In this study we evaluated the in vitro and in vivo effects of β-alanine on some parameters of oxidative stress in cerebral cortex and cerebellum of 21-day-old rats. The animals received three peritoneal injections of β-alanine (300 mg /Kg of body weight) and the controls received the same volume of saline solution (NaCl 0.85%) at 3 hours intervals. In vitro experiments verified the influence of different concentrations of β-alanine (0.5 and 1.0 mM), where we observe that the β-amino acid has the ability to alter the homeostasis of enzymes SOD and CAT antioxidant, since in both tissues studied was inhibited activities of CAT and SOD increased at the highest concentration (1.0 mM). We found that the in vitro β-alanine decreases the oxidation of DCFH in cerebellum and increases the total content of GSH in cerebral cortex, without altering other parameters, however, was not observed in the acute administration of β-alanine. In vivo experiments we observed that the DCFH along with the entire content of thiols increased in both tissues studied. No significant difference in the levels of GSH and TBARS. The mechanism of action of β-alanine on the activity of the antioxidant enzymes was different in the two experiments, in acute model of CAT activity increased, however, SOD activity was inhibited by β-alanine in cerebral cortex and cerebellum. Therefore, we found that β-alanine alters the activity of enzymes antioxidants, thus increasing the content of reactive species and possibly generating oxidative stress. These findings may in part contribute to the neurological alterations found in patients with β-alaninemia. Besides, possible side effects of the nutritional supplementation of β-alanine need more attention.
2

Efeito in vitro e in vivo da β-alanina sobre alguns parâmetros de estresse oxidativo em córtex cerebral e cerebelo de ratos jovens

Gemelli, Tanise January 2012 (has links)
β–alanina é um β-aminoácido derivado da degradação da pirimidina uracila. Em altas concentrações desenvolve uma desordem muito rara da via de degradação das pirimidinas, conhecida como β–alaninemia. O acúmulo do β–aminoácido pode causar consequências bioquímicas como: depleção dos níveis de taurina, aumento de espécies reativas e excreção aumentada de GABA. Essas alterações levam a um distúrbio no desenvolvimento neurológico, contribuindo para a patologia da doença. A β–alanina também é utilzada como suplemento nutricional por atletas visando melhor desempenho físico. Em nosso estudo avaliamos o efeito in vitro e in vivo da β–alanina sobre alguns parâmetros de estresse oxidativo em córtex cerebral e cerebelo de ratos Wistar de 21 dias de idade. Os animais receberam três injeções subcutâneas de β–alanina (300 mg/Kg de peso corporal) e os controles receberam o mesmo volume de solução salina (NaCl 0.85%) em intervalos de três horas. Nos experimentos in vitro verificamos a influência de diferentes concentrações de β–alanina (0,5 e 1.0 mM), onde observamos que o β–aminoácido possui capacidade de alterar a homeostasia das enzimas antioxidantes CAT e SOD, pois em ambos tecidos estudados a atividades da CAT foi inibida e da SOD aumentada na concentração mais alta (1,0 mM). Verificamos que a β–alanina in vitro diminui a oxidação do DCFH em cerebelo e aumenta o conteúdo total de GSH em cortéx cerebral, não alterando os outros parâmetros analisados, entretanto, não foi o observado na administração aguda de β–alanina. Nos experimentos in vivo observamos que o DCFH juntamente com o conteúdo total de tióis aumentaram nos dois tecidos estudados. Não observamos diferença significativa quanto aos níveis de GSH e TBARS. O mecanismo de ação da β–alanina sobre a atividade das enzimas antioxidantes foi diferente nos dois experimentos, pois no modelo agudo a atividade da CAT aumentou, no entanto, a atividade da SOD foi inibida pela β–alanina em cortéx cerebral e cerebelo. Portanto, observamos que a β–alanina altera a atividade das enzimas antioxidantes, aumentando com isso o conteúdo de espécies reativas e gerando possivelmente estresse oxidativo. Esses achados podem contribuir em partes com as alterações neurológicas encontrada em pacientes com β–alaninemia. Além disso, os possíveis efeitos secundários da suplementação nutricional de β-alanina necessitam de mais atenção. / β–alanine is an β-amino acid derived from the degradation of pyrimidine uracil. In high concentrations develops a very rare disorder of pyrimidine degradation pathway, known as β-alaninemia. The accumulation of β-amino acid can cause biochemical consequences such as: depletion of taurine levels, increase of reactive species and increased excretion of GABA. These conditions may cause neurological disturbances, contributing to the pathology of the disease. The β-alanine is also used as a nutritional supplement by athletes seeking to improve physical performance. In this study we evaluated the in vitro and in vivo effects of β-alanine on some parameters of oxidative stress in cerebral cortex and cerebellum of 21-day-old rats. The animals received three peritoneal injections of β-alanine (300 mg /Kg of body weight) and the controls received the same volume of saline solution (NaCl 0.85%) at 3 hours intervals. In vitro experiments verified the influence of different concentrations of β-alanine (0.5 and 1.0 mM), where we observe that the β-amino acid has the ability to alter the homeostasis of enzymes SOD and CAT antioxidant, since in both tissues studied was inhibited activities of CAT and SOD increased at the highest concentration (1.0 mM). We found that the in vitro β-alanine decreases the oxidation of DCFH in cerebellum and increases the total content of GSH in cerebral cortex, without altering other parameters, however, was not observed in the acute administration of β-alanine. In vivo experiments we observed that the DCFH along with the entire content of thiols increased in both tissues studied. No significant difference in the levels of GSH and TBARS. The mechanism of action of β-alanine on the activity of the antioxidant enzymes was different in the two experiments, in acute model of CAT activity increased, however, SOD activity was inhibited by β-alanine in cerebral cortex and cerebellum. Therefore, we found that β-alanine alters the activity of enzymes antioxidants, thus increasing the content of reactive species and possibly generating oxidative stress. These findings may in part contribute to the neurological alterations found in patients with β-alaninemia. Besides, possible side effects of the nutritional supplementation of β-alanine need more attention.
3

Efeito in vitro e in vivo da β-alanina sobre alguns parâmetros de estresse oxidativo em córtex cerebral e cerebelo de ratos jovens

Gemelli, Tanise January 2012 (has links)
β–alanina é um β-aminoácido derivado da degradação da pirimidina uracila. Em altas concentrações desenvolve uma desordem muito rara da via de degradação das pirimidinas, conhecida como β–alaninemia. O acúmulo do β–aminoácido pode causar consequências bioquímicas como: depleção dos níveis de taurina, aumento de espécies reativas e excreção aumentada de GABA. Essas alterações levam a um distúrbio no desenvolvimento neurológico, contribuindo para a patologia da doença. A β–alanina também é utilzada como suplemento nutricional por atletas visando melhor desempenho físico. Em nosso estudo avaliamos o efeito in vitro e in vivo da β–alanina sobre alguns parâmetros de estresse oxidativo em córtex cerebral e cerebelo de ratos Wistar de 21 dias de idade. Os animais receberam três injeções subcutâneas de β–alanina (300 mg/Kg de peso corporal) e os controles receberam o mesmo volume de solução salina (NaCl 0.85%) em intervalos de três horas. Nos experimentos in vitro verificamos a influência de diferentes concentrações de β–alanina (0,5 e 1.0 mM), onde observamos que o β–aminoácido possui capacidade de alterar a homeostasia das enzimas antioxidantes CAT e SOD, pois em ambos tecidos estudados a atividades da CAT foi inibida e da SOD aumentada na concentração mais alta (1,0 mM). Verificamos que a β–alanina in vitro diminui a oxidação do DCFH em cerebelo e aumenta o conteúdo total de GSH em cortéx cerebral, não alterando os outros parâmetros analisados, entretanto, não foi o observado na administração aguda de β–alanina. Nos experimentos in vivo observamos que o DCFH juntamente com o conteúdo total de tióis aumentaram nos dois tecidos estudados. Não observamos diferença significativa quanto aos níveis de GSH e TBARS. O mecanismo de ação da β–alanina sobre a atividade das enzimas antioxidantes foi diferente nos dois experimentos, pois no modelo agudo a atividade da CAT aumentou, no entanto, a atividade da SOD foi inibida pela β–alanina em cortéx cerebral e cerebelo. Portanto, observamos que a β–alanina altera a atividade das enzimas antioxidantes, aumentando com isso o conteúdo de espécies reativas e gerando possivelmente estresse oxidativo. Esses achados podem contribuir em partes com as alterações neurológicas encontrada em pacientes com β–alaninemia. Além disso, os possíveis efeitos secundários da suplementação nutricional de β-alanina necessitam de mais atenção. / β–alanine is an β-amino acid derived from the degradation of pyrimidine uracil. In high concentrations develops a very rare disorder of pyrimidine degradation pathway, known as β-alaninemia. The accumulation of β-amino acid can cause biochemical consequences such as: depletion of taurine levels, increase of reactive species and increased excretion of GABA. These conditions may cause neurological disturbances, contributing to the pathology of the disease. The β-alanine is also used as a nutritional supplement by athletes seeking to improve physical performance. In this study we evaluated the in vitro and in vivo effects of β-alanine on some parameters of oxidative stress in cerebral cortex and cerebellum of 21-day-old rats. The animals received three peritoneal injections of β-alanine (300 mg /Kg of body weight) and the controls received the same volume of saline solution (NaCl 0.85%) at 3 hours intervals. In vitro experiments verified the influence of different concentrations of β-alanine (0.5 and 1.0 mM), where we observe that the β-amino acid has the ability to alter the homeostasis of enzymes SOD and CAT antioxidant, since in both tissues studied was inhibited activities of CAT and SOD increased at the highest concentration (1.0 mM). We found that the in vitro β-alanine decreases the oxidation of DCFH in cerebellum and increases the total content of GSH in cerebral cortex, without altering other parameters, however, was not observed in the acute administration of β-alanine. In vivo experiments we observed that the DCFH along with the entire content of thiols increased in both tissues studied. No significant difference in the levels of GSH and TBARS. The mechanism of action of β-alanine on the activity of the antioxidant enzymes was different in the two experiments, in acute model of CAT activity increased, however, SOD activity was inhibited by β-alanine in cerebral cortex and cerebellum. Therefore, we found that β-alanine alters the activity of enzymes antioxidants, thus increasing the content of reactive species and possibly generating oxidative stress. These findings may in part contribute to the neurological alterations found in patients with β-alaninemia. Besides, possible side effects of the nutritional supplementation of β-alanine need more attention.
4

Ação da insulina na captação de beta-alanina pelo músculo esquelético: efeito sobre o conteúdo de beta-alanina muscular e mecanismos envolvidos / Insulin action on beta-alanine uptake by skeletal muscle: effect on muscle beta-alanine content and mechanisms involved

Gonçalves, Lívia de Souza 23 May 2019 (has links)
A disponibilidade de beta-alanina é o fator limitante para a síntese intramuscular de carnosina. Dessa maneira, aumentar a disponibilidade de beta-alanina para o músculo esquelético é a estratégia mais eficaz para aumentar o conteúdo de carnosina muscular. Postula-se que o transportador de beta-alanina (TauT) possa ser estimulado pela insulina. Para testar essa hipótese, examinamos se a captação de beta-alanina pelo músculo esquelético de humanos é influenciada pela hiperinsulinemia, controlando as concentrações de insulina e beta-alanina no plasma através de infusão intravenosa aguda de beta-alanina. Realizamos um estudo crossover e contrabalanceado em 12 homens jovens e saudáveis (27,5±5,1 anos). Os participantes compareceram ao laboratório em duas ocasiões separadas por 10 semanas de whashout. A beta-alanina foi infundida por via intravenosa em ambos os ensaios por 150 min a uma taxa de 0,11 g.kg.min-1. Em um ensaio, a técnica de clamp euglicêmico hiperinsulinêmico foi usada para obtermos concentrações elevadas de insulina (AI), enquanto que no outro ensaio, foram mantidas concentrações de insulina em jejum (BI). Antes e 30 minutos após a infusão de beta-alanina, amostras de músculo (biópsias percutâneas) foram coletadas para determinar o conteúdo de beta-alanina e carnosina. Coletas sanguíneas foram realizadas antes (0), 10, 30, 60, 90, 120, 150 e 30 min (180) após a infusão para análise de insulina e beta-alanina plasmáticas. Urina 24 h foi coletada após o período de infusão para análise de beta-alanina. Não houve diferenças significantes entre os ensaios na concentração de beta-alanina plasmática (p=0,20), de beta-alanina muscular (p=0,72), de carnosina muscular (p=0,82) e de beta-alanina urinária (p= 0,92). A hiperinsulinemia não aumentou a captação de beta-alanina para o músculo esquelético, nem aumentou a retenção de beta-alanina corporal, pelo menos quando as concentrações de beta-alanina excederam a Vmax do TauT. Nossas descobertas sugerem que as estratégias de suplementação de beta-alanina que manipulam as concentrações de insulina provavelmente apresentam relevância clínica limitada / Beta-alanine availability is limiting for the intramuscular synthesis of carnosine. Thus, increasing beta-alanine availability to skeletal muscle is the most effective strategy to increase muscle carnosine content. It has been postulated that the transmembrane transporter of beta-alanine (TauT) could be stimulated by insulin. To test this hypothesis, we examined whether the beta-alanine uptake by human muscle is influenced by hyperinsulinemia by controlling both insulin and beta-alanine concentrations in plasma via intravenous infusion of beta-alanine. We conducted a counterbalanced crossover study in 12 young men (27.5 ± 5.1 yr). Participants attended to the laboratory on two separated occasions, 10 weeks apart. beta-alanine was intravenously infused on both trials for 150 min at a rate of 0.11 g.kg.min-1. In one trial, a hyperinsulinemic-euglycemic clamp was used to main high insulin concentrations (HI) whereas fasting insulin concentrations (LI) was maintained in the other trial. Before and 30 min after infusion, muscle samples (percutaneous biopsies) were taken to determine beta-alanine and carnosine content. Blood samples were taken before (0), 10, 30, 60, 90, 120, 150 e 30 min (180) after the infusion for plasma insulin and beta-alanine analysis. 24 h urine was colleted after infusion for beta-alanine analysis. No significant differences in plasma beta-alanine (p=0.20), muscle beta-alanine (p=0.72), muscle carnosine (p=0.82) and urinary beta-alanine (p=0.92) were shown between conditions. Hyperinsulinemia did not increase beta-alanine uptake to muscle tissue and bodily tissues, nor did it increase whole-body beta-alanine retention, at least when beta-alanine concentrations exceed the Vmax of TauT. Our findings suggest that beta-alanine supplementation strategies that maniupulate insulin concentrations are probably of limited clinical relevance
5

Influência do estado de treinamento sobre o desempenho físico em resposta à suplementação de beta-alanina / Influence of training status on physical performance in response to beta-alanine supplementation

Painelli, Vitor de Salles 29 April 2013 (has links)
Estudos recentes têm demonstrado que a suplementação de beta-alanina (BA) pode melhorar o desempenho físico. O mecanismo proposto para tal resultado envolve o aumento das concentrações intramusculares de carnosina, um dipeptídeo cuja função mais bem atribuída é a de manutenção do equilíbrio ácido-básico. Apesar do emergente corpo literário acerca dos efeitos ergogênicos da suplementação de BA, a maior parte das evidências provém de estudos conduzidos com indivíduos não treinados ou fisicamente ativos, enquanto os estudos com indivíduos treinados são escassos, e seus resultados, controversos. Tem sido especulado que a diferença na capacidade tamponante muscular entre indivíduos treinados e não treinados é um possível fator mascarando o efeito ergogênico da suplementação de BA em indivíduos treinados, já que têm sido demonstrado que este perfil de indivíduos possui maior capacidade tamponante e conteúdo muscular de carnosina. Assim, o objetivo do presente estudo foi investigar a influência do estado de treinamento sobre o desempenho físico intermitente de membros inferiores em resposta à suplementação de BA. Para tanto, 40 homens jovens e saudáveis foram recrutados para participar do estudo, e divididos em dois grupos de acordo com o seu estado de treinamento [ciclistas treinados (T) ou indivíduos não treinados (NT)]. Os participantes foram aleatoriamente designados a um grupo suplementado com BA ou placebo (dextrose - PL), provendo quatro condições experimentais: NTPL, NTBA, TPL e TBA. A suplementação foi realizada com a ingestão de 6.4 gramas de BA ou PL por dia, durante 4 semanas. Antes e após o período de suplementação, os participantes completaram 4 séries do teste de Wingate para membro inferior, com 30 segundos de duração cada uma e 3 minutos de descanso entre elas. O trabalho total realizado foi significantemente aumentado após o período de suplementação em ambos os grupos NTBA (+1349 ± 1411 kJ; P = 0.03) e TBA (+1978 ± 1508 kJ; P = 0.002), foi significantemente reduzido no grupo NTPL (-1385 ± 2815 kJ; P = 0.03), e não se alterou no grupo TPL (-219 ± 1507 kJ; P = 0.73). Comparada ao período pré-suplementação, a potência média no período pós-suplementação foi significantemente maior na série 4 para o grupo NTBA (P = 0.0004), enquanto a mesma foi maior nas séries 1, 2 e 4 (P <= 0.05) para o grupo TBA. Não foram observadas diferenças na potência média entre o período pré- e pós-suplementação para os grupos NTPL e TPL. Em conclusão, quatro semanas de suplementação de BA foram efetivas em melhorar o desempenho físico intermitente de membros inferiores em ambos os participantes treinados e não treinados. Estes dados ressaltam a eficácia ergogênica da suplementação de BA para exercícios de alta-intensidade, independentemente do estado de treinamento do indivíduo / Recent studies have demonstrated that beta-alanine (BA) supplementation can improve performance. The proposed mechanisms for this result involve an increased muscle carnosine content, a dipeptide whose function is attributed to the maintenance of acid-base balance. Even though the body of evidence surrounding the ergogenic effects of BA supplementation is increasing, most of the evidences come from studies conducted with physically active or untrained individuals, while studies with trained participants are scarce, and their results, controversial. It has been speculated that the difference in muscle buffering capacity between trained and untrained individuals is a possible factor masking the ergogenic effect of BA supplementation in trained individuals, who have already been demonstrated to have greater buffering capacity and muscle carnosine content. Therefore, the aim of this study was to investigate the influence of training status on intermittent lower-body performance in response to BA supplementation. For this purpose, forty young males were divided into two groups according to their training status (trained - T, and untrained - NT cyclists). Participants were further randomly allocated to BA or placebo (dextrose - PL) groups, providing four experimental conditions: NTPL, NTBA, TPL, TBA. BA or PL was ingested by 6.4 g·d-1, during for 4 weeks. Before and after the supplementation period, participants completed four 30-seconds lower-body Wingate bouts, separated by 3 minutes. Total work done was significantly increased following supplementation in both NTBA (+1349 ± 1411 kJ; P = 0.03) and TBA (+1978 ± 1508 kJ; P = 0.002), and it was significantly reduced in NTPL (-1385 ± 2815 kJ; P = 0.03) with no difference for TPL (-219 ± 1507 kJ; P = 0.73). Compared to pre-supplementation, post-supplementation mean power output was significantly higher in bout 4 for NTBA (P = 0.0004), and higher in bouts 1, 2 and 4 (P <= 0.05) for TBA. No differences were observed in mean power output for NTPL and TPL from pre- to post-supplementation period. In conclusion, four weeks of BA supplementation was effective at improving intermittent lower-body performance in both untrained and trained individuals. These data highlight the efficacy of BA as an ergogenic aid for high-intensity exercise regardless of the training status of the individual
6

Avaliação dos efeitos da β-alanina sobre as homeostasias redox e energética em córtex cerebral e cerebelo de ratos Wistar / Avaliação dos efeitos da beta-alanina sobre as homeostasias redox e energética em córtex cerebral e cerebelo de ratos Wistar

Gemelli, Tanise January 2017 (has links)
Altas concentrações de β-alanina podem causar desordens metabólicas e aumento na produção de espécies reativas, alterações na homeostasia redox e energética, bem como depleção dos níveis de taurina e excreção aumentada de GABA. Essas alterações levam a distúrbios no desenvolvimento neurológico, contribuindo para as manifestações clínicas. O quadro de acúmulo de β-alanina no plasma é conhecido como β-alaninemia. Neste trabalho, investigamos os efeitos crônico da sobrecarga de β-alanina em córtex cerebral e cerebelo de ratos Wistar. Os animais receberam administração intraperitoneal de β-alanina (300 mg/kg) ou solução salina (NaCl 0,85%) no mesmo volume (10μl/kg de peso corporal) duas vezes ao dia com intervalo de 12 horas, durante 14 dias. Os resultados mostram que altas concentrações plasmáticas de β-alanina alteram o equilíbrio redox celular, observado no aumento de oxidação do diclorofluorescina em córtex cerebral e cerebelo de ratos Wistar. Observamos o mesmo resultado na determinação da atividade das enzimas antioxidantes glutationa peroxidase e superóxido dismutase, onde houve uma inibição das atividades Os níveis de tióis totais foram mensurados pela técnica de sulfidrilas, onde verificamos que cada tecido apresentou níveis diferenciados, elevação em córtex cerebral e diminuição em cerebelo. Investigamos também as atividades das enzimas da rede de fosforiltransferência. A atividade da hexoquinase foi aumentada em ambos os tecidos, diferentemente da enzima gliceraldeído-3-fosfato desidrogenase, que se elevou em córtex cerebral e se inibiu em cerebelo. A inibição de atividade enzimática foi observada também na piruvato-cinase e lactato desidrogenase. Os complexos II, II-III, IV e a succinato desidrogenase foram mensurados a fim de melhor esclarecer as alterações metabólicas identificadas. No entanto, observamos um aumento do complexo IV e succinato desidrogenase e uma inalteração do complexo II-III em ambos os tecidos. Portanto, nossos resultados sugerem uma suscetibilidade dos tecidos quanto à alta carga de β-alanina, apresentando distúrbios na homeostasia redox e energética. Sendo assim, os achados podem contribuir, em parte, com as alterações neurológicas encontradas em pacientes com β-alaninemia. / High concentrations of β-alanine may cause metabolic disorders and increase the production of reactive species in the region of redox and energetic homeostasis, as well as depletion of taurine levels and increased excretion of GABA. These changes lead to neurodevelopmental disorders, contributing to clinical manifestations. The accumulation of plasma β-alanine is known as β-alaninemia. In this work, we investigated the chronic effects of β-alanine overload in the cortex cerebral and cerebellum of Wistar rats. The animals were given intraperitoneal administration of β- alanine (300 mg/kg) or saline (0.85% NaCl) in the same volume (10 μl/kg body weight) twice a day at 12-hour intervals for 14 days. The results show that high plasma concentrations of β-alanine alters the cellular redox balance reflected by the increase of oxidation of dichlorofluorescine in cerebral cortex and cerebellum of Wistar rats. We observed the same result in the determination of the activity of the antioxidant enzymes glutathione peroxidase and superoxide dismutase, where there was an inhibition of the activities. The levels of total thiols were measured by the sulfhydryl determination technique, where we verified that each tissue presented differentiated levels, elevation in cerebral cortex and decrease in cerebellum. We also investigate the activities of phosphoryl transfer network enzymes. The activity of hexokinase was increased in both tissues, unlike the enzyme glyceraldehyde-3-phosphate dehydrogenase, which was elevated in the cerebral cortex and inhibited in the cerebellum. Inhibition of enzymatic activity was also observed in pyruvate kinase and lactate dehydrogenase. Activities complexes II, II-III, IV and succinate dehydrogenase were measured in order to better clarify the identified metabolic aberrations. However, we observed an increase of the activity complex IV and succinate dehydrogenase and an unchanged II-III complex in both tissues. Therefore, our results suggest a susceptibility of tissues to the high β-alanine load, presenting disorders in redox and energetic homeostasis. Thus, the findings may contribute, in part, to the neurological findings found in patients with β-alaninemia.
7

Avaliação dos efeitos da β-alanina sobre as homeostasias redox e energética em córtex cerebral e cerebelo de ratos Wistar / Avaliação dos efeitos da beta-alanina sobre as homeostasias redox e energética em córtex cerebral e cerebelo de ratos Wistar

Gemelli, Tanise January 2017 (has links)
Altas concentrações de β-alanina podem causar desordens metabólicas e aumento na produção de espécies reativas, alterações na homeostasia redox e energética, bem como depleção dos níveis de taurina e excreção aumentada de GABA. Essas alterações levam a distúrbios no desenvolvimento neurológico, contribuindo para as manifestações clínicas. O quadro de acúmulo de β-alanina no plasma é conhecido como β-alaninemia. Neste trabalho, investigamos os efeitos crônico da sobrecarga de β-alanina em córtex cerebral e cerebelo de ratos Wistar. Os animais receberam administração intraperitoneal de β-alanina (300 mg/kg) ou solução salina (NaCl 0,85%) no mesmo volume (10μl/kg de peso corporal) duas vezes ao dia com intervalo de 12 horas, durante 14 dias. Os resultados mostram que altas concentrações plasmáticas de β-alanina alteram o equilíbrio redox celular, observado no aumento de oxidação do diclorofluorescina em córtex cerebral e cerebelo de ratos Wistar. Observamos o mesmo resultado na determinação da atividade das enzimas antioxidantes glutationa peroxidase e superóxido dismutase, onde houve uma inibição das atividades Os níveis de tióis totais foram mensurados pela técnica de sulfidrilas, onde verificamos que cada tecido apresentou níveis diferenciados, elevação em córtex cerebral e diminuição em cerebelo. Investigamos também as atividades das enzimas da rede de fosforiltransferência. A atividade da hexoquinase foi aumentada em ambos os tecidos, diferentemente da enzima gliceraldeído-3-fosfato desidrogenase, que se elevou em córtex cerebral e se inibiu em cerebelo. A inibição de atividade enzimática foi observada também na piruvato-cinase e lactato desidrogenase. Os complexos II, II-III, IV e a succinato desidrogenase foram mensurados a fim de melhor esclarecer as alterações metabólicas identificadas. No entanto, observamos um aumento do complexo IV e succinato desidrogenase e uma inalteração do complexo II-III em ambos os tecidos. Portanto, nossos resultados sugerem uma suscetibilidade dos tecidos quanto à alta carga de β-alanina, apresentando distúrbios na homeostasia redox e energética. Sendo assim, os achados podem contribuir, em parte, com as alterações neurológicas encontradas em pacientes com β-alaninemia. / High concentrations of β-alanine may cause metabolic disorders and increase the production of reactive species in the region of redox and energetic homeostasis, as well as depletion of taurine levels and increased excretion of GABA. These changes lead to neurodevelopmental disorders, contributing to clinical manifestations. The accumulation of plasma β-alanine is known as β-alaninemia. In this work, we investigated the chronic effects of β-alanine overload in the cortex cerebral and cerebellum of Wistar rats. The animals were given intraperitoneal administration of β- alanine (300 mg/kg) or saline (0.85% NaCl) in the same volume (10 μl/kg body weight) twice a day at 12-hour intervals for 14 days. The results show that high plasma concentrations of β-alanine alters the cellular redox balance reflected by the increase of oxidation of dichlorofluorescine in cerebral cortex and cerebellum of Wistar rats. We observed the same result in the determination of the activity of the antioxidant enzymes glutathione peroxidase and superoxide dismutase, where there was an inhibition of the activities. The levels of total thiols were measured by the sulfhydryl determination technique, where we verified that each tissue presented differentiated levels, elevation in cerebral cortex and decrease in cerebellum. We also investigate the activities of phosphoryl transfer network enzymes. The activity of hexokinase was increased in both tissues, unlike the enzyme glyceraldehyde-3-phosphate dehydrogenase, which was elevated in the cerebral cortex and inhibited in the cerebellum. Inhibition of enzymatic activity was also observed in pyruvate kinase and lactate dehydrogenase. Activities complexes II, II-III, IV and succinate dehydrogenase were measured in order to better clarify the identified metabolic aberrations. However, we observed an increase of the activity complex IV and succinate dehydrogenase and an unchanged II-III complex in both tissues. Therefore, our results suggest a susceptibility of tissues to the high β-alanine load, presenting disorders in redox and energetic homeostasis. Thus, the findings may contribute, in part, to the neurological findings found in patients with β-alaninemia.
8

Avaliação dos efeitos da β-alanina sobre as homeostasias redox e energética em córtex cerebral e cerebelo de ratos Wistar / Avaliação dos efeitos da beta-alanina sobre as homeostasias redox e energética em córtex cerebral e cerebelo de ratos Wistar

Gemelli, Tanise January 2017 (has links)
Altas concentrações de β-alanina podem causar desordens metabólicas e aumento na produção de espécies reativas, alterações na homeostasia redox e energética, bem como depleção dos níveis de taurina e excreção aumentada de GABA. Essas alterações levam a distúrbios no desenvolvimento neurológico, contribuindo para as manifestações clínicas. O quadro de acúmulo de β-alanina no plasma é conhecido como β-alaninemia. Neste trabalho, investigamos os efeitos crônico da sobrecarga de β-alanina em córtex cerebral e cerebelo de ratos Wistar. Os animais receberam administração intraperitoneal de β-alanina (300 mg/kg) ou solução salina (NaCl 0,85%) no mesmo volume (10μl/kg de peso corporal) duas vezes ao dia com intervalo de 12 horas, durante 14 dias. Os resultados mostram que altas concentrações plasmáticas de β-alanina alteram o equilíbrio redox celular, observado no aumento de oxidação do diclorofluorescina em córtex cerebral e cerebelo de ratos Wistar. Observamos o mesmo resultado na determinação da atividade das enzimas antioxidantes glutationa peroxidase e superóxido dismutase, onde houve uma inibição das atividades Os níveis de tióis totais foram mensurados pela técnica de sulfidrilas, onde verificamos que cada tecido apresentou níveis diferenciados, elevação em córtex cerebral e diminuição em cerebelo. Investigamos também as atividades das enzimas da rede de fosforiltransferência. A atividade da hexoquinase foi aumentada em ambos os tecidos, diferentemente da enzima gliceraldeído-3-fosfato desidrogenase, que se elevou em córtex cerebral e se inibiu em cerebelo. A inibição de atividade enzimática foi observada também na piruvato-cinase e lactato desidrogenase. Os complexos II, II-III, IV e a succinato desidrogenase foram mensurados a fim de melhor esclarecer as alterações metabólicas identificadas. No entanto, observamos um aumento do complexo IV e succinato desidrogenase e uma inalteração do complexo II-III em ambos os tecidos. Portanto, nossos resultados sugerem uma suscetibilidade dos tecidos quanto à alta carga de β-alanina, apresentando distúrbios na homeostasia redox e energética. Sendo assim, os achados podem contribuir, em parte, com as alterações neurológicas encontradas em pacientes com β-alaninemia. / High concentrations of β-alanine may cause metabolic disorders and increase the production of reactive species in the region of redox and energetic homeostasis, as well as depletion of taurine levels and increased excretion of GABA. These changes lead to neurodevelopmental disorders, contributing to clinical manifestations. The accumulation of plasma β-alanine is known as β-alaninemia. In this work, we investigated the chronic effects of β-alanine overload in the cortex cerebral and cerebellum of Wistar rats. The animals were given intraperitoneal administration of β- alanine (300 mg/kg) or saline (0.85% NaCl) in the same volume (10 μl/kg body weight) twice a day at 12-hour intervals for 14 days. The results show that high plasma concentrations of β-alanine alters the cellular redox balance reflected by the increase of oxidation of dichlorofluorescine in cerebral cortex and cerebellum of Wistar rats. We observed the same result in the determination of the activity of the antioxidant enzymes glutathione peroxidase and superoxide dismutase, where there was an inhibition of the activities. The levels of total thiols were measured by the sulfhydryl determination technique, where we verified that each tissue presented differentiated levels, elevation in cerebral cortex and decrease in cerebellum. We also investigate the activities of phosphoryl transfer network enzymes. The activity of hexokinase was increased in both tissues, unlike the enzyme glyceraldehyde-3-phosphate dehydrogenase, which was elevated in the cerebral cortex and inhibited in the cerebellum. Inhibition of enzymatic activity was also observed in pyruvate kinase and lactate dehydrogenase. Activities complexes II, II-III, IV and succinate dehydrogenase were measured in order to better clarify the identified metabolic aberrations. However, we observed an increase of the activity complex IV and succinate dehydrogenase and an unchanged II-III complex in both tissues. Therefore, our results suggest a susceptibility of tissues to the high β-alanine load, presenting disorders in redox and energetic homeostasis. Thus, the findings may contribute, in part, to the neurological findings found in patients with β-alaninemia.
9

Influência do estado de treinamento sobre o desempenho físico em resposta à suplementação de beta-alanina / Influence of training status on physical performance in response to beta-alanine supplementation

Vitor de Salles Painelli 29 April 2013 (has links)
Estudos recentes têm demonstrado que a suplementação de beta-alanina (BA) pode melhorar o desempenho físico. O mecanismo proposto para tal resultado envolve o aumento das concentrações intramusculares de carnosina, um dipeptídeo cuja função mais bem atribuída é a de manutenção do equilíbrio ácido-básico. Apesar do emergente corpo literário acerca dos efeitos ergogênicos da suplementação de BA, a maior parte das evidências provém de estudos conduzidos com indivíduos não treinados ou fisicamente ativos, enquanto os estudos com indivíduos treinados são escassos, e seus resultados, controversos. Tem sido especulado que a diferença na capacidade tamponante muscular entre indivíduos treinados e não treinados é um possível fator mascarando o efeito ergogênico da suplementação de BA em indivíduos treinados, já que têm sido demonstrado que este perfil de indivíduos possui maior capacidade tamponante e conteúdo muscular de carnosina. Assim, o objetivo do presente estudo foi investigar a influência do estado de treinamento sobre o desempenho físico intermitente de membros inferiores em resposta à suplementação de BA. Para tanto, 40 homens jovens e saudáveis foram recrutados para participar do estudo, e divididos em dois grupos de acordo com o seu estado de treinamento [ciclistas treinados (T) ou indivíduos não treinados (NT)]. Os participantes foram aleatoriamente designados a um grupo suplementado com BA ou placebo (dextrose - PL), provendo quatro condições experimentais: NTPL, NTBA, TPL e TBA. A suplementação foi realizada com a ingestão de 6.4 gramas de BA ou PL por dia, durante 4 semanas. Antes e após o período de suplementação, os participantes completaram 4 séries do teste de Wingate para membro inferior, com 30 segundos de duração cada uma e 3 minutos de descanso entre elas. O trabalho total realizado foi significantemente aumentado após o período de suplementação em ambos os grupos NTBA (+1349 ± 1411 kJ; P = 0.03) e TBA (+1978 ± 1508 kJ; P = 0.002), foi significantemente reduzido no grupo NTPL (-1385 ± 2815 kJ; P = 0.03), e não se alterou no grupo TPL (-219 ± 1507 kJ; P = 0.73). Comparada ao período pré-suplementação, a potência média no período pós-suplementação foi significantemente maior na série 4 para o grupo NTBA (P = 0.0004), enquanto a mesma foi maior nas séries 1, 2 e 4 (P <= 0.05) para o grupo TBA. Não foram observadas diferenças na potência média entre o período pré- e pós-suplementação para os grupos NTPL e TPL. Em conclusão, quatro semanas de suplementação de BA foram efetivas em melhorar o desempenho físico intermitente de membros inferiores em ambos os participantes treinados e não treinados. Estes dados ressaltam a eficácia ergogênica da suplementação de BA para exercícios de alta-intensidade, independentemente do estado de treinamento do indivíduo / Recent studies have demonstrated that beta-alanine (BA) supplementation can improve performance. The proposed mechanisms for this result involve an increased muscle carnosine content, a dipeptide whose function is attributed to the maintenance of acid-base balance. Even though the body of evidence surrounding the ergogenic effects of BA supplementation is increasing, most of the evidences come from studies conducted with physically active or untrained individuals, while studies with trained participants are scarce, and their results, controversial. It has been speculated that the difference in muscle buffering capacity between trained and untrained individuals is a possible factor masking the ergogenic effect of BA supplementation in trained individuals, who have already been demonstrated to have greater buffering capacity and muscle carnosine content. Therefore, the aim of this study was to investigate the influence of training status on intermittent lower-body performance in response to BA supplementation. For this purpose, forty young males were divided into two groups according to their training status (trained - T, and untrained - NT cyclists). Participants were further randomly allocated to BA or placebo (dextrose - PL) groups, providing four experimental conditions: NTPL, NTBA, TPL, TBA. BA or PL was ingested by 6.4 g·d-1, during for 4 weeks. Before and after the supplementation period, participants completed four 30-seconds lower-body Wingate bouts, separated by 3 minutes. Total work done was significantly increased following supplementation in both NTBA (+1349 ± 1411 kJ; P = 0.03) and TBA (+1978 ± 1508 kJ; P = 0.002), and it was significantly reduced in NTPL (-1385 ± 2815 kJ; P = 0.03) with no difference for TPL (-219 ± 1507 kJ; P = 0.73). Compared to pre-supplementation, post-supplementation mean power output was significantly higher in bout 4 for NTBA (P = 0.0004), and higher in bouts 1, 2 and 4 (P <= 0.05) for TBA. No differences were observed in mean power output for NTPL and TPL from pre- to post-supplementation period. In conclusion, four weeks of BA supplementation was effective at improving intermittent lower-body performance in both untrained and trained individuals. These data highlight the efficacy of BA as an ergogenic aid for high-intensity exercise regardless of the training status of the individual

Page generated in 0.4467 seconds