• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ROLES OF KRÜPPEL LIKE FACTORS KLF1, KLF2, AND KLF4 IN EMBRYONIC BETA-GLOBIN GENE EXPRESSION

Alhashem, Yousef 12 June 2009 (has links)
Krüppel like factors (KLFs) are a family of 17 proteins whose main function is gene regulation by binding to DNA elements in the promoters of various genes. KLF transcription factors recognize CACCC-elements and act as activators or repressors of the gene expression. Among the 17 family members, KLF1, KLF2, and KLF4 share high homology to each other. KLF1 is the founding member of the family and is an erythroid-specific protein. KLF2 is expressed in erythroid, endothelial, and other cells. KLF4 is expressed in endothelial, smooth muscle, and other cells. In this thesis, the functions of these KLFs were reviewed in the context of subjects related to erythropoiesis and cardiovascular development. A mouse model lacking KLF1, KLF2, and KLF4 was used to investigate whether these genes have overlapping functions in regulating the embryonic β-globin genes during early embryogenesis. Quantitative RT-PCR assays were used to measure the expression level of Ey- and βh1- globin mRNA at embryonic day 9.5 (E9.5). It was found that KLF1-/-KLF2-/- and KLF1-/-KLF2-/-KLF4-/- embryos express significantly decreased amounts of Ey- and βh1-globin genes when compared to WT and KLF4-/- embryos. There were no significant changes in the levels of Ey- and βh1-globin mRNA between KLF1-/-KLF2-/- and KLF1-/-KLF2-/-KLF4-/- embryos. It was demonstrated here that KLF1 does not regulate KLF2 in mouse erythroid cells at E10.5.
2

Rôle du facteur de transcription BP1 dans la régulation des gènes du locus humain de beta-globine

Ah-Son, Nicolas 04 1900 (has links)
Le facteur de transcription BP1 humain est exprimé dans les cellules érythroïdes pendant le développement fœtal mais son niveau d’expression est réduit au stade adulte. Les études antérieures in vitro ont montré que BP1 est un répresseur du gène adulte de β-globine mais sa fonction dans la régulation des gènes ε et γ n’a pas été abordée à ce jour. Dans notre étude, nos analyses de BP1 humain ont été menées in vivo au stade embryonnaire en utilisant une lignée de souris transgénique surexprimant BP1 dans les cellules érythroïdes définitives murines. Au niveau protéique, BP1 humain est exprimé aux âges E12.5 et E13.5 dans les cellules érythroïdes fœtales des embryons transgéniques. Toutefois, les niveaux de BP1 humain ne perturbent pas l’érythropoïèse définitive fœtale: les embryons transgéniques ne sont pas anémiques et ne meurent pas in utero. La surexpression de BP1 humain altère tout de même le niveau endogène des facteurs de transcription Ikaros et SOX6 impliqués dans la régulation des gènes de β-globine durant l’érythropoïèse définitive fœtale murine. Chez les embryons doubles transgéniques exprimant BP1 et les gènes humains de β-globine à E12.5, l’expression du gène adulte β est réduite alors que celle des gènes ε et γ est non réprimée. Les mesures d’expression des gènes humains de β-globine effectuées en absence d’Ikaros à E12.5 précisent le rôle de BP1 humain dans l’activation du gène embryonnaire ε. Dans les cellules érythroïdes fœtales murines dépourvues d’Ikaros à E12.5, BP1 humain augmente grandement l’expression des facteurs de transcription EKLF et BCL11A et semble déréprimer l’expression de SOX6, ce qui conduit à une répression des gènes fœtaux et une activation du gène adulte β au jour embryonnaire murin suivant. Puisque BP1 atténue l’altération de l’expression des gènes fœtaux et adultes causée par l’absence d’Ikaros, nous proposons que BP1 et Ikaros soient liés dans les mécanismes de transcription des gènes humains de β-globine. / The transcription factor BP1 is expressed in erythroid cells during fetal development but is downregulated at adult stage. In vitro previous studies revealed that BP1 acts as a repressor of adult β-globin gene expression but its function in ε and γ globin gene regulation has not been investigated so far. In our studies, BP1 functions analyses were proceeded in vivo at embryonic stage by using a transgenic mouse line overexpressing human BP1 in murine definitive erythroid cells. At protein level, human BP1 is expressed in E12.5 and E13.5 fetal erythroid cells of transgenic embryos. However, levels of human BP1 do not impair murine fetal definitive erythropoiesis : transgenic embryos are not anemic and survive during gestation. Overexpression of human BP1 impairs, nonetheless, endogenous level of the transcription factors Ikaros and SOX6 involved in β-globin gene regulation during murine fetal definitive erythropoiesis. In double transgenic mice expressing BP1 and human β-globin genes at embryonic day E12.5, β gene expression is reduced whereas ε- and γ-globin genes are not repressed. Measurements of β-globin gene expression in absence of Ikaros pinpoint the role of human BP1 in embryonic ε-globin gene activation. In E12.5 Ik-/- murine fetal erythroid cells, human BP1 highly increases EKLF and BCL11A transcription level and seems to derepress SOX6 expression which lead to γ silencing and β activation at E13.5. Since BP1 attenuates globin gene alterations caused by absence of Ikaros, we propose that BP1 and Ikaros are linked in transcriptional mechanisms of human β-globin genes.
3

Rôle du facteur de transcription BP1 dans la régulation des gènes du locus humain de beta-globine

Ah-Son, Nicolas 04 1900 (has links)
Le facteur de transcription BP1 humain est exprimé dans les cellules érythroïdes pendant le développement fœtal mais son niveau d’expression est réduit au stade adulte. Les études antérieures in vitro ont montré que BP1 est un répresseur du gène adulte de β-globine mais sa fonction dans la régulation des gènes ε et γ n’a pas été abordée à ce jour. Dans notre étude, nos analyses de BP1 humain ont été menées in vivo au stade embryonnaire en utilisant une lignée de souris transgénique surexprimant BP1 dans les cellules érythroïdes définitives murines. Au niveau protéique, BP1 humain est exprimé aux âges E12.5 et E13.5 dans les cellules érythroïdes fœtales des embryons transgéniques. Toutefois, les niveaux de BP1 humain ne perturbent pas l’érythropoïèse définitive fœtale: les embryons transgéniques ne sont pas anémiques et ne meurent pas in utero. La surexpression de BP1 humain altère tout de même le niveau endogène des facteurs de transcription Ikaros et SOX6 impliqués dans la régulation des gènes de β-globine durant l’érythropoïèse définitive fœtale murine. Chez les embryons doubles transgéniques exprimant BP1 et les gènes humains de β-globine à E12.5, l’expression du gène adulte β est réduite alors que celle des gènes ε et γ est non réprimée. Les mesures d’expression des gènes humains de β-globine effectuées en absence d’Ikaros à E12.5 précisent le rôle de BP1 humain dans l’activation du gène embryonnaire ε. Dans les cellules érythroïdes fœtales murines dépourvues d’Ikaros à E12.5, BP1 humain augmente grandement l’expression des facteurs de transcription EKLF et BCL11A et semble déréprimer l’expression de SOX6, ce qui conduit à une répression des gènes fœtaux et une activation du gène adulte β au jour embryonnaire murin suivant. Puisque BP1 atténue l’altération de l’expression des gènes fœtaux et adultes causée par l’absence d’Ikaros, nous proposons que BP1 et Ikaros soient liés dans les mécanismes de transcription des gènes humains de β-globine. / The transcription factor BP1 is expressed in erythroid cells during fetal development but is downregulated at adult stage. In vitro previous studies revealed that BP1 acts as a repressor of adult β-globin gene expression but its function in ε and γ globin gene regulation has not been investigated so far. In our studies, BP1 functions analyses were proceeded in vivo at embryonic stage by using a transgenic mouse line overexpressing human BP1 in murine definitive erythroid cells. At protein level, human BP1 is expressed in E12.5 and E13.5 fetal erythroid cells of transgenic embryos. However, levels of human BP1 do not impair murine fetal definitive erythropoiesis : transgenic embryos are not anemic and survive during gestation. Overexpression of human BP1 impairs, nonetheless, endogenous level of the transcription factors Ikaros and SOX6 involved in β-globin gene regulation during murine fetal definitive erythropoiesis. In double transgenic mice expressing BP1 and human β-globin genes at embryonic day E12.5, β gene expression is reduced whereas ε- and γ-globin genes are not repressed. Measurements of β-globin gene expression in absence of Ikaros pinpoint the role of human BP1 in embryonic ε-globin gene activation. In E12.5 Ik-/- murine fetal erythroid cells, human BP1 highly increases EKLF and BCL11A transcription level and seems to derepress SOX6 expression which lead to γ silencing and β activation at E13.5. Since BP1 attenuates globin gene alterations caused by absence of Ikaros, we propose that BP1 and Ikaros are linked in transcriptional mechanisms of human β-globin genes.
4

Effect of CTCF and Cohesin on the dynamics of RNA polymerase II transcription and coupled pre-messenger RNA processing

Liska, Olga January 2013 (has links)
The CCCTC-binding factor (CTCF) is a versatile, multifunctional zinc-finger protein involved in a broad spectrum of cellular functions. In mammalian cells, CTCF functions together with the Cohesin complex, an essential regulator of sister chromatid cohesion. Together, CTCF and Cohesin have been shown to regulate gene expression at a genome-wide level in mammalian cells. In the yeast Saccharomyces pombe, Cohesin has been implicated in transcription termination of convergently transcribed genes, in a cell cycle dependent manner. The aim of this thesis was to investigate the possibility of direct transcriptional involvement of CTCF and Cohesin in human cells. The first model system applied for this experimental purpose was the β-globin gene with introduced canonical CTCF-binding sites replacing the endogenous Co- Transcriptional Cleavage (CoTC) element downstream of β-globin. The results obtained indicate that recruitment of CTCF to the β-globin 3` flanking region does not prevent read-through transcription. However, CTCF-binding does mediate RNA Polymerase II (Pol II) pausing at the site of recruited CTCF. This results in more efficient pre-mRNA 3` end processing and therefore rescues β-globin mRNA to wild type levels. Cohesin was not detected at the introduced CTCF-binding sites. These results are a contribution to our understanding of the spatio-temporal requirements for cotranscriptional events like 3` end pre-mRNA processing and Pol II kinetics. The second part of my thesis presents an investigation on the involvement of CTCF and Cohesin in lipopolysaccharide (LPS)-induced Tumor Necrosis Factor α (TNFα) gene expression regulation in human monocytes and differentiated M1- and M2-type macrophages. These studies provide first evidence of Cohesin recruitment to the TNFα gene body and its regulatory NFκB-binding sites. Differences in the recruitment profiles obtained indicate potential regulatory differences of TNFα among the three cell types. Preliminary data provide an insight into the effects on TNFα mRNA levels upon down-regulation of Cohesin subunits.
5

Étude de la collaboration entre les facteurs de transcription hématopoïétiques lors du développement et de la différenciation des cellules érythroïdes

Ross, Julie 11 1900 (has links)
La régulation transcriptionnelle des gènes est cruciale pour permettre le bon fonctionnement des cellules. Afin que les cellules puissent accomplir leurs fonctions, les gènes doivent être exprimés adéquatement dans le bon type cellulaire et au stade de développement et de différenciation approprié. Un dérèglement dans l’expression de un ou plusieurs gènes peut entraîner de graves conséquences sur le destin de la cellule. Divers éléments en cis (ex : promoteurs et enhancers) et en trans (machinerie transcriptionnelle et facteurs de transcription) sont impliqués dans la régulation de la transcription. Les gènes du locus humain beta-globine (hub) sont exprimés dans les cellules érythroïdes et sont finenement régulés lors du développement et de la différenciation. Des mutations dans différentes régions du locus causent entre autres les beta-thalassémies. Nous avons utilisé ce modèle bien caractérisé afin d’étudier différents mécanismes de régulation favorisés par les facteurs de transcription qui sont exprimés dans les cellules érythroïdes. Nous nous sommes intéressés à l’importance de l’élément en cis HS2 du Locus control region. Cet élément possède plusieurs sites de liaison pour des facteurs de transcription impliqués dans la régulation des gènes du locus hub. Nos résultats montrent que HS2 possède un rôle dans l’organisation de la chromatine du locus qui peut être dissocié de son rôle d’enhancer. De plus, HS2 n’est pas essentiel pour l’expression à haut niveau du gène beta alors qu’il est important pour l’expression des gènes gamma. Ceci suggère que le recrutement des différents facteurs au site HS2 lors du développement influence différement les gènes du locus. Dans un deuxième temps, nous avons investigué l’importance de HS2 lors de la différenciation des cellules érythroïdes. Il avait été rapporté que l’absence de HS2 influence grandement la potentialisation de la chromatine du gène beta. La potentialisation dans les cellules progénitrices favorise l’activation transcriptionnelle du gène dans les cellules matures. Nous avons caractérisé le recrutement de différents facteurs de transcription au site HS2 et au promoteur beta dans les cellules progénitrices hématopoïétiques (CPH) ainsi que dans les cellules érythroïdes matures. Nos résultats montrent que le facteur EKLF est impliqué dans la potentialisation de la chromatine et favorise le recrutement des facteurs BRG1, p45 et CBP dans les CPH. L’expression de GATA-1 dans les cellules érythroïdes matures permet le recrutement de GATA-1 au locus hub dans ces cellules. Ces données suggèrent que la combinaison de EKLF et GATA-1 est requise pour permettre une activation maximale du gène beta dans les cellules érythroïdes matures. Un autre facteur impliqué dans la régulation du locus hub est Ikaros. Nous avons étudié son recrutement au locus hub et avons observé que Ikaros est impliqué dans la répression des gènes gamma. Nos résultats montrent aussi que GATA-1 est impliqué dans la répression de ces gènes et qu’il interagit avec Ikaros. Ensemble, Ikaros et GATA-1 favorisent la formation d’un complexe de répression aux promoteurs gamma. Cette étude nous a aussi permis d’observer que Ikaros et GATA-1 sont impliqués dans la répression du gène Gata2. De façon intéressante, nous avons caractérisé le mécanisme de répression du gène Hes1 (un gène cible de la voie Notch) lors de la différenciation érythroïde. Similairement à ce qui a été observé pour les gènes gamma, Hes1 est aussi réprimé par Ikaros et GATA-1. Ces résultats suggèrent donc que la combinaison de Ikaros et GATA-1 est associée à la répression de plusieurs de gènes dans les cellules érythroïdes. Globalement cette thèse rapporte de nouveaux mécanismes d’action de différents facteurs de transcription dans les cellules érythroïdes. Particulièrement, nos travaux ont permis de proposer un modèle pour la régulation des gènes du locus hub lors du développement et de la différenciation. De plus, nous rapportons pour la première fois l’importance de la collaboration entre les facteurs Ikaros et GATA-1 dans la régulation transcriptionnelle de gènes dans les cellules érythroïdes. Des mutations associées à certains des facteurs étudiés ont été rapportées dans des cas de beta-thalassémies ainsi que de leucémies. Nos travaux serviront donc à avoir une meilleure compréhension des mécanismes d’action de ces facteurs afin de potentiellement pouvoir les utiliser comme cibles thérapeutiques. / Gene transcriptional regulation is crucial for appropriate cell functioning. Genes must be properly expressed in the right cell type as well as at the right developmental and differenciation stage in order to allow the cells to accomplish their functions. Abnormal expression of one or many genes can dramatically influence cell fate. Diverse cis (ex : promoters and enhancers) and trans (transcriptional machinery and transcription factors) elements are involved in transcriptional regulation. Genes of the human beta-globin (hub) locus are expressed in erythroid cells and are thightly regulated during development and differentiation. Mutations in several regions of the locus are involved in beta-thalassemia. We used this well characterized model in order to study different regulation mechanisms that are mediated by transcription factors expressed in erythroid cells. We were interested in the important role of the cis element HS2 from the Locus control region. This region contains several binding sites for transcription factors that are involved in hub locus gene regulation. Our results show that HS2 has a role in chromatin organization of the locus which is distinct from its enhancer function. Moreover, HS2 is not essential for high level beta gene expression while it is important for gamma gene expression. This suggest that the influence of transcription factors recruited to HS2 varies during development. Secondly, we investigated HS2 importance during erythroid differentiation. It was reported the HS2 deletion strongly influences chromatin potentiation of beta gene. Potentiation in progenitor cells favors gene transcriptional activation in mature cells. We characterized transcription factor recruitment to HS2 and b promoter in hematopoietic progenitor cells (HPC). Our results show that EKLF is involved in chromatin potentiation and favors the recruitment of BRG1, p45 and CBP in HPC. GATA-1 expression in mature erythroid cells allows GATA-1 recruitment to hub locus in these cells. These data suggest that EKLF and GATA-1 combination is required to allow maximal beta gene activation in mature erythroid cells. Another factor involved in hub locus regulation is Ikaros. We studied its recruitment to hub locus and found that Ikaros is involved in gamma gene repression. Our data also shows that GATA-1 is involved in the repression of these genes and that it interacts with Ikaros. Together, Ikaros and GATA-1 favors the formation of a repressive complex to gamma promoters. In this study, we also observed that Ikaros and GATA-1 are involved in Gata2 gene repression. Interestingly, we have also characterized the repression mechanism of Hes1 gene (a Notch target gene) during erythroid differentiation. Similar to what is observed for gamma genes, Hes1 is also repressed by Ikaros and GATA-1. Collectivelly, our data suggest that Ikaros and GATA-1 combination is associated with the repression of several genes in erythroid cells. Globally, this thesis reports new mechanisms of action for different transcription factors in erythroid cells. Particularly, our work allows us to propose a model for hub locus gene regulation during development and differentiation. Moreover, we show for the first time that the combination of Ikaros and GATA-1 is relevant for gene regulation in erythroid cells. Several mutations in the transcription factors that we studied were associated with beta-thalassemia or leukemia. Our work will thus help to better understand mechanisms of action of these transcription factors in order to potentially use them as therapeutical targets.
6

Étude de la collaboration entre les facteurs de transcription hématopoïétiques lors du développement et de la différenciation des cellules érythroïdes

Ross, Julie 11 1900 (has links)
La régulation transcriptionnelle des gènes est cruciale pour permettre le bon fonctionnement des cellules. Afin que les cellules puissent accomplir leurs fonctions, les gènes doivent être exprimés adéquatement dans le bon type cellulaire et au stade de développement et de différenciation approprié. Un dérèglement dans l’expression de un ou plusieurs gènes peut entraîner de graves conséquences sur le destin de la cellule. Divers éléments en cis (ex : promoteurs et enhancers) et en trans (machinerie transcriptionnelle et facteurs de transcription) sont impliqués dans la régulation de la transcription. Les gènes du locus humain beta-globine (hub) sont exprimés dans les cellules érythroïdes et sont finenement régulés lors du développement et de la différenciation. Des mutations dans différentes régions du locus causent entre autres les beta-thalassémies. Nous avons utilisé ce modèle bien caractérisé afin d’étudier différents mécanismes de régulation favorisés par les facteurs de transcription qui sont exprimés dans les cellules érythroïdes. Nous nous sommes intéressés à l’importance de l’élément en cis HS2 du Locus control region. Cet élément possède plusieurs sites de liaison pour des facteurs de transcription impliqués dans la régulation des gènes du locus hub. Nos résultats montrent que HS2 possède un rôle dans l’organisation de la chromatine du locus qui peut être dissocié de son rôle d’enhancer. De plus, HS2 n’est pas essentiel pour l’expression à haut niveau du gène beta alors qu’il est important pour l’expression des gènes gamma. Ceci suggère que le recrutement des différents facteurs au site HS2 lors du développement influence différement les gènes du locus. Dans un deuxième temps, nous avons investigué l’importance de HS2 lors de la différenciation des cellules érythroïdes. Il avait été rapporté que l’absence de HS2 influence grandement la potentialisation de la chromatine du gène beta. La potentialisation dans les cellules progénitrices favorise l’activation transcriptionnelle du gène dans les cellules matures. Nous avons caractérisé le recrutement de différents facteurs de transcription au site HS2 et au promoteur beta dans les cellules progénitrices hématopoïétiques (CPH) ainsi que dans les cellules érythroïdes matures. Nos résultats montrent que le facteur EKLF est impliqué dans la potentialisation de la chromatine et favorise le recrutement des facteurs BRG1, p45 et CBP dans les CPH. L’expression de GATA-1 dans les cellules érythroïdes matures permet le recrutement de GATA-1 au locus hub dans ces cellules. Ces données suggèrent que la combinaison de EKLF et GATA-1 est requise pour permettre une activation maximale du gène beta dans les cellules érythroïdes matures. Un autre facteur impliqué dans la régulation du locus hub est Ikaros. Nous avons étudié son recrutement au locus hub et avons observé que Ikaros est impliqué dans la répression des gènes gamma. Nos résultats montrent aussi que GATA-1 est impliqué dans la répression de ces gènes et qu’il interagit avec Ikaros. Ensemble, Ikaros et GATA-1 favorisent la formation d’un complexe de répression aux promoteurs gamma. Cette étude nous a aussi permis d’observer que Ikaros et GATA-1 sont impliqués dans la répression du gène Gata2. De façon intéressante, nous avons caractérisé le mécanisme de répression du gène Hes1 (un gène cible de la voie Notch) lors de la différenciation érythroïde. Similairement à ce qui a été observé pour les gènes gamma, Hes1 est aussi réprimé par Ikaros et GATA-1. Ces résultats suggèrent donc que la combinaison de Ikaros et GATA-1 est associée à la répression de plusieurs de gènes dans les cellules érythroïdes. Globalement cette thèse rapporte de nouveaux mécanismes d’action de différents facteurs de transcription dans les cellules érythroïdes. Particulièrement, nos travaux ont permis de proposer un modèle pour la régulation des gènes du locus hub lors du développement et de la différenciation. De plus, nous rapportons pour la première fois l’importance de la collaboration entre les facteurs Ikaros et GATA-1 dans la régulation transcriptionnelle de gènes dans les cellules érythroïdes. Des mutations associées à certains des facteurs étudiés ont été rapportées dans des cas de beta-thalassémies ainsi que de leucémies. Nos travaux serviront donc à avoir une meilleure compréhension des mécanismes d’action de ces facteurs afin de potentiellement pouvoir les utiliser comme cibles thérapeutiques. / Gene transcriptional regulation is crucial for appropriate cell functioning. Genes must be properly expressed in the right cell type as well as at the right developmental and differenciation stage in order to allow the cells to accomplish their functions. Abnormal expression of one or many genes can dramatically influence cell fate. Diverse cis (ex : promoters and enhancers) and trans (transcriptional machinery and transcription factors) elements are involved in transcriptional regulation. Genes of the human beta-globin (hub) locus are expressed in erythroid cells and are thightly regulated during development and differentiation. Mutations in several regions of the locus are involved in beta-thalassemia. We used this well characterized model in order to study different regulation mechanisms that are mediated by transcription factors expressed in erythroid cells. We were interested in the important role of the cis element HS2 from the Locus control region. This region contains several binding sites for transcription factors that are involved in hub locus gene regulation. Our results show that HS2 has a role in chromatin organization of the locus which is distinct from its enhancer function. Moreover, HS2 is not essential for high level beta gene expression while it is important for gamma gene expression. This suggest that the influence of transcription factors recruited to HS2 varies during development. Secondly, we investigated HS2 importance during erythroid differentiation. It was reported the HS2 deletion strongly influences chromatin potentiation of beta gene. Potentiation in progenitor cells favors gene transcriptional activation in mature cells. We characterized transcription factor recruitment to HS2 and b promoter in hematopoietic progenitor cells (HPC). Our results show that EKLF is involved in chromatin potentiation and favors the recruitment of BRG1, p45 and CBP in HPC. GATA-1 expression in mature erythroid cells allows GATA-1 recruitment to hub locus in these cells. These data suggest that EKLF and GATA-1 combination is required to allow maximal beta gene activation in mature erythroid cells. Another factor involved in hub locus regulation is Ikaros. We studied its recruitment to hub locus and found that Ikaros is involved in gamma gene repression. Our data also shows that GATA-1 is involved in the repression of these genes and that it interacts with Ikaros. Together, Ikaros and GATA-1 favors the formation of a repressive complex to gamma promoters. In this study, we also observed that Ikaros and GATA-1 are involved in Gata2 gene repression. Interestingly, we have also characterized the repression mechanism of Hes1 gene (a Notch target gene) during erythroid differentiation. Similar to what is observed for gamma genes, Hes1 is also repressed by Ikaros and GATA-1. Collectivelly, our data suggest that Ikaros and GATA-1 combination is associated with the repression of several genes in erythroid cells. Globally, this thesis reports new mechanisms of action for different transcription factors in erythroid cells. Particularly, our work allows us to propose a model for hub locus gene regulation during development and differentiation. Moreover, we show for the first time that the combination of Ikaros and GATA-1 is relevant for gene regulation in erythroid cells. Several mutations in the transcription factors that we studied were associated with beta-thalassemia or leukemia. Our work will thus help to better understand mechanisms of action of these transcription factors in order to potentially use them as therapeutical targets.
7

Fuzzy klasifikace DNA sekvencí / Fuzzy classification of DNA sequences

Těthal, Jiří January 2013 (has links)
The work deals with the fuzzy classification of DNA sequences. In the first part the theory summarized information about Fuzzy logic and methods of its use in the classification of biological sequence data. The second part is practically deal with the classification algorithm for assessing the similarity of sequences. Specifically, the dividing of coding and non-coding parts of the sequence and the use of fuzzy classification in DNA barcoding.

Page generated in 0.0401 seconds