• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nombre de rotation et dynamique faiblement hyperbolique.

Crovisier, Sylvain 20 December 2001 (has links) (PDF)
Cette thèse s'appuie sur deux branches des systèmes dynamiques : la théorie du nombre de rotation des endomorphismes du cercle de degré un et des applications de l'anneau déviant la verticale, ainsi que la théorie des systèmes non-uniformément hyperboliques. Nous nous intéressons tout d'abord à une classe d'applications bimodales du cercle, dilatantes et affines par morceaux. Chaque application de cette famille possède un nombre de rotation presque sûr : c'est le nombre de rotation de presque tout point du cercle. Nous étudions sa régularité et montrons que le nombre de rotation presque sûr est irrationnel pour un ensemble de paramètres de mesure totale. Nous considérons ensuite les applications de l'anneau qui dévient la verticale et plus particulièrement les applications bimodales de la famille d'Arnol'd épaissie. Un rôle essentiel est joué par les orbites de torsion nulle. Elles permettent de montrer que l'ensemble des applications qui possèdent un nombre de rotation fixé, forme dans l'espace des paramètres une langue d'Arnol'd bordée par deux surfaces. La frontière des langues rationnelles est associée à des bifurcations selle-noeud et homoclines. Nous obtenons enfin des estimations sur la taille de l'ensemble de rotation et de l'attracteur de Birkhoff. L'appendice est consacré aux bifurcations selles-noeud d'ensembles hyperboliques localement maximaux dont la direction instable est de dimension un. Cette bifurcation préserve la décomposition géométrique de l'espace tangent en espaces stables et instables. En revanche, l'expansion dans la direction instable dégénère près d'une orbite périodique. Nous obtenons alors une bifurcation de codimension un.

Page generated in 0.0712 seconds