41 |
Alternating current studies and kinetic analysis of valinomycin mediated charge-transport through lipid bilayer membranesCox, Kenneth Lee 01 January 1984 (has links)
In this study we have investigated the frequency dependence of bilayer lipid membranes for a series of glycerylmonoolein/ n-decane bilayers in various aqueous ionic solutions containing the ionophore valinomycin. Reliable values of membrane capacitance and conductance were obtained over the frequency range 0.2 - 200 KHz using an automatic balancing bridge under the control of a microprocessor unit. The admittance data was then normalized and curve-fitted to produce relaxation times and amplitudes from which the kinetic rate parameters, as deduced from a single slab dielectric membrane model, were calculated. These ac experimental rate constants were then compared with those obtained from charge-pulse relaxation methods.
|
42 |
The application of exact electrodiffusion theory to ion transport across lipid bilayer membranesCohen, Scott 01 January 1983 (has links)
The question of how ions interact with each other and with the potential energy barrier in thin lipid bilayer membranes has interested investigators for several years. The application of electrodiffusion theory to the study of this question is the central theme of this work. We have calculated current-voltage curves for barriers of various shapes and heights, in each case by means of numerically integrating the exact electrodiffusion equation as well as this same equation in the constant field approximation. We have also calculated the total charge in the membrane for the same conditions under which we have calculated the current-voltage curves.
|
43 |
Design of Biomembrane-Mimicking Substrates of Tunable Viscosity to Regulate Cellular MechanoresponseMinner, Daniel Eugene 20 March 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Tissue cells display mechanosensitivity in their ability to discern and respond to changes in the viscoelastic properties of their surroundings. By anchoring and pulling, cells are capable of translating mechanical stimuli into a biological response through a process known as mechanotransduction, a pathway believed to critically impact cell adhesion, morphology and multiple cellular processes from migration to differentiation. While previous studies on polymeric gels have revealed the influence of substrate elasticity on cellular shape and function, a lack of suitable substrates (i.e. with mobile cell-substrate linkers) has hindered research on the role of substrate viscosity. This work presents the successful design and characterization of lipid-bilayer based cell substrates of tunable viscosity affecting cell-substrate linker mobility through changes in viscous drag. Here, two complementary membrane systems were employed to span a wide range of viscosity. Single polymer-tethered lipid bilayers were used to generate subtle changes in substrate viscosity while multiple, polymer-interconnected lipid bilayer stacks were capable of producing dramatic changes in substrate viscosity. The homogeneity and integrity of these novel multibilayer systems in the presence of adherent cells was confirmed using optical microscopy techniques. Profound changes in cellular growth, phenotype and cytoskeletal organization confirm the ability of cells to sense changes in viscosity. Moreover, increased migration speeds coupled with rapid area fluctuations suggest a transition to a different migration mode in response to the dramatic changes in substrate viscosity.
|
44 |
Modulation of lipid domain formation in mixed model systems by proteins and peptidesOldham, Alexis Jean January 2008 (has links) (PDF)
Thesis (M.S.)--University of North Carolina Wilmington, 2008. / Title from PDF title page (viewed September 24, 2008) Includes bibliographical references (p. 58-59)
|
45 |
Investigations Of Polymer Grafted Lipid Bilayers Using Dissipative Particle DynamicsManubhai, Thakkar Foram 12 1900 (has links)
Lipid molecules are amphiphilic in nature consisting of a hydrophilic head group and hydrophobic hydrocarbon tails. The lipid bilayer consists of two layers of lipid molecules arranged with their hydrophobic tails facing each other and their hydrophilic head groups solvated by water. Lipid bilayers with hydrophilic polymer chains grafted onto the head groups have applications in various fields, such as stabilization of liposomes designed for targeted drug delivery, synthesis of supported bilayers for biomaterial applications, surface modification of implanted medical devices to prevent biological fouling and design of in vitro biosensors. The focus of this thesis lies in understanding the effects of polymer grafting on the thermodynamics and mechanical properties of lipid bilayers.
Dissipative particle dynamics (DPD) has evolved as a promising method to study complex soft matter systems. The basic DPD algorithm, and its implementation are discussed in Chapter 2 of this thesis. It is important to achieve a tensionless state while studying phase transitions and deducing the mechanical properties of the bilayer. We proposed a modification of the Andersen barostat which can be incorporated in a DPD simulation to achieve the tensionless state as well as carry out simulations at a prescribed tension.
In Chapter 3 of this thesis the effect of polymer grafting on single tailed lipid bilayers is studied. Simulations are carried out by varying the grafting fraction, Gf, defined as the ratio of the number of polymer molecules to the number of lipid molecules. At lowGf, the bilayer shows a sharp transition from the gel (Lβ) to the liquid crystalline (Lα) phase. This main melting transition temperature is lowered as Gf is increased. Corresponding to this, an increase in the area per head group is also observed. Above a critical value of Gf the interdigitated, LβI phase is observed prior to the main transition for the longer lipid tails. The analysis for two tailed lipids as a function of polymer chain length is extensively studied in Chapter 5. For the case of two tailed lipids, an intermediate interdigitated phase was not observed and the decrease in the melting temperature is more pronounced as the length of the polymer chain is increased. The scaling for fractional change in the area per head group, as well as the decrease in transition temperature as a function of polymer grafting are in good agreement with mean field theory predictions.
The bending modulus (k) and area stretch modulus (kA) are essential for determining the shape and the mechanical stability of biological cells or lipid based vesicles. In simulations, the bending modulus k is evaluated from the Fourier transform of the out-of-plane fluctuations of the bilayer mid-plane. In Chapter 4 of this thesis, we illustrate that a surface representation based on Delanuay triangulation provides a robust parameter free representation of the bilayer surface. By evaluating the bending modulus for single tail lipids of different tail lengths, the continuum scaling relation d2 is verified. To our knowledge this is the first systematic investigation and verification of this scaling relationship using computer simulations. Using the continuum relation, =kAd2/ we find that α depends weakly on the tail lengths of the bilayer. Nevertheless we illustrate that a value of α=130 can be used to reliably estimate the bending modulus from the area stretch modulus for polymer free bilayers. Using our method, we are also able to capture the low q scalings and obtain the bending modulus of the gel (Lβ) phase.
Grafted polymer was found to increase the value of the bending modulus for single tail lipids. Although the presence of polymer directly increases the area per head group, the suppressed height fluctuations dominate and the bending modulus increases for the single tail lipids. For two tail lipids a small decrease in the bending modulus was observed at low grafting fractions and short polymer chains. For large polymer lengths the bending modulus was found to increase monotonically.
|
46 |
Effects of carbon nanotubes on barrier epithelial cells via effects on lipid bilayersLewis, Shanta January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Carbon nanotubes (CNTs) are one of the most common nanoparticles (NP) found in workplace air. Therefore, there is a strong chance that these NP will enter the human body. They have similar physical properties to asbestos, a known toxic material, yet there is limited evidence showing that CNTs may be hazardous to human barrier epithelia. In previous studies done in our laboratory, the effects of CNTs on the barrier function in the human airway epithelial cell line (Calu-3) were measured. Measurements were done using electrophysiology, a technique which measures both transepithelial electrical resistance (TEER), a measure of monolayer integrity, and short circuit current (SCC) which is a measure of vectorial ion transport across the cell monolayer. The research findings showed that select physiologically relevant concentrations of long single-wall (SW) and multi-wall (MW) CNTs significantly decreased the stimulated SCC of the Calu-3 cells compared to untreated cultures. Calu-3 cells showed decreases in TEER when incubated for 48 hours (h) with concentrations of MWCNT ranging from 4µg/cm2 to 0.4ng/cm2 and SWCNT ranging from 4µg/cm2 to 0.04ng/cm2. The impaired cellular function, despite sustained cell viability, led us to investigate the mechanism by which the CNTs were affecting the cell membrane. We investigated the interaction of short MWCNTs with model lipid membranes using an ion channel amplifier, Planar Bilayer Workstation. Membranes were synthesized using neutral diphytanoylphosphatidylcholine (DPhPC) and negatively charged diphytanoylphosphatidylserine (DPhPS) lipids. Gramicidin A (GA), an ion channel reporter protein, was used to measure changes in ion channel conductance due to CNT exposures. Synthetic membranes exposed to CNTs allowed bursts of currents to cross the membrane when they were added to the membrane buffer system. When added to the membrane in the presence of GA, they distorted channel formation and reduced membrane stability.
|
47 |
Probing cellular mechano-sensitivity using biomembrane-mimicking cell substrates of adjustable stiffnessLin, Yu-Hung 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / It is increasingly recognized that mechanical properties of substrates play a pivotal role in the regulation of cellular fate and function. However, the underlying mechanisms of cellular mechanosensing still remain a topic of open debate. Traditionally, advancements in this field have been made using polymeric substrates of adjustable stiffness with immobilized linkers. While such substrates are well suited to examine cell adhesion and migration in an extracellular matrix environment, they are limited in their ability to replicate the rich dynamics found at cell-cell interfaces. To address this challenge, we recently introduced a linker-functionalized polymer-tethered multi-bilayer stack, in which substrate stiffness can be altered by the degree of bilayer stacking, thus allowing the analysis of cellular mechanosensitivity. Here, we apply this novel biomembrane-mimicking cell substrate design to explore the mechanosensitivity of C2C12 myoblasts in the presence of cell-cell-mimicking N-cadherin linkers. Experiments are presented, which demonstrate a relationship between the degree of bilayer stacking and mechanoresponse of plated cells, such as morphology, cytoskeletal organization, cellular traction forces, and migration speed. Furthermore, we illustrate the dynamic assembly of bilayer-bound N-cadherin linkers underneath cellular adherens junctions. In addition, properties of individual and clustered N-cadherins are examined in the polymer-tethered bilayer system in the absence of plated cells.
Alternatively, substrate stiffness can be adjusted by the concentration of lipopolymers in a single polymer-tethered lipid bilayer. On the basis of this alternative cell substrate concept, we also discuss recent results on a linker-functionalized single polymer-tethered bilayer substrate with a lateral gradient in lipopolymer concentration (substrate viscoelasticity). Specifically, we show that the lipopolymer gradient has a notable impact on spreading, cytoskeletal organization, and motility of 3T3 fibroblasts. Two cases are discussed: 1. polymer-tethered bilayers with a sharp boundary between low and high lipopolymer concentration regions and 2. polymer-tethered bilayers with a gradual gradient in lipopolymer concentration.
|
48 |
Effects of carbon nanotubes on airway epithelial cells and model lipid bilayers : proteomic and biophysical studiesLi, Pin January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Carbon nanomaterials are widely produced and used in industry, medicine and scientific research. To examine the impact of exposure to nanoparticles on human health, the human airway epithelial cell line, Calu-3, was used to evaluate changes in the cellular proteome that could account for alterations in cellular function of airway epithelia after 24 h exposure to 10 μg/mL and 100 ng/mL of two common carbon nanoparticles, singleand multi-wall carbon nanotubes (SWCNT, MWCNT). After exposure to the nanoparticles, label-free quantitative mass spectrometry (LFQMS) was used to study differential protein expression. Ingenuity Pathway Analysis (IPA) was used to conduct a bioinformatics analysis of proteins identified by LFQMS. Interestingly, after exposure to a high concentration (10 μg/mL; 0.4 μg/cm2) of MWCNT or SWCNT, only 8 and 13 proteins, respectively, exhibited changes in abundance. In contrast, the abundance of hundreds of proteins was altered in response to a low concentration (100 ng/mL; 4
ng/cm2) of either CNT. Of the 281 and 282 proteins that were significantly altered in response to MWCNT or SWCNT, respectively, 231 proteins were the same.
Bioinformatic analyses found that the proteins common to both kinds of nanotubes are associated with the cellular functions of cell death and survival, cell-to-cell signaling and interaction, cellular assembly and organization, cellular growth and proliferation,
infectious disease, molecular transport and protein synthesis. The decrease in expression of the majority proteins suggests a general stress response to protect cells. The STRING database was used to analyze the various functional protein networks. Interestingly, some
proteins like cadherin 1 (CDH1), signal transducer and activator of transcription 1 (STAT1), junction plakoglobin (JUP), and apoptosis-associated speck-like protein
containing a CARD (PYCARD), appear in several functional categories and tend to be in the center of the networks. This central positioning suggests they may play important roles in multiple cellular functions and activities that are altered in response to carbon
nanotube exposure. To examine the effect of nanotubes on the plasma membrane, we investigated the
interaction of short purified MWCNT with model lipid membranes using a planar bilayer workstation. Bilayer lipid membranes were synthesized using neutral 1, 2-diphytanoylsn-glycero-3-phosphocholine (DPhPC) in 1 M KCl. The ion channel model protein, Gramicidin A (gA), was incorporated into the bilayers and used to measure the effect of MWCNT on ion transport. The opening and closing of ion channels, amplitude of current, and open probability and lifetime of ion channels were measured and analyzed by Clampfit. The presence of an intermediate concentration of MWCNT (2 μg/ml) could be related to a statistically significant decrease of the open probability and lifetime of gA channels.
The proteomic studies revealed changes in response to CNT exposure. An analysis of the changes using multiple databases revealed alterations in pathways, which were
consistent with the physiological changes that were observed in cultured cells exposed to very low concentrations of CNT. The physiological changes included the break down of the barrier function and the inhibition of the mucocillary clearance, both of which could increase the risk of CNT’s toxicity to human health. The biophysical studies indicate MWCNTs have an effect on single channel kinetics of Gramicidin A model cation channel. These changes are consistent with the inhibitory effect of nanoparticles on hormone stimulated transepithelial ion flux, but additional experiments will be necessary to substantiate this correlation.
|
Page generated in 0.0786 seconds