1 |
Development of bioinformatics methods for the analysis of large collections of transcription factor binding motifs : positional motif enrichment and motif clustering / Développement de méthodes bioinformatiques pour l'analyse de collections massives de motifs de liaison pour des facteurs transcriptionnels : enrichissement local et clustering de motifsCastro-Mondragon, Jaime 13 July 2017 (has links)
Les facteurs transcriptionnels (TF) sont des protéines qui contrôlent l'expression des gènes. Leurs motifs de liaison (TFBM, également appelés motifs) sont généralement représentés sous forme de matrices de scores spécifiques de positions (PSSM). L'analyse de motifs est utilisée en routine afin de découvrir des facteurs candidats pour la régulation d'un jeu de séquences d'intérêt. L'avénement des méthodes à haut débit a permis de détecter des centaines de motifs, qui sont disponibles dans des bases de données. Durant ma thèse, j'ai développé deux nouvelles méthodes et implémenté des outils logiciels pour le traitement de collections massives de motifs: matrix-clustering regroupe les motifs par similarité; position-scan détecte les motifs présentant des préférences de position relativement à une coordonnée de référence. Les méthodes que j'ai développées ont été évaluées sur base de cas d'études, et utilisées pour extraire de l'information interprétable à partir de différents jeux de données de Drosophila melanogaster et Homo sapiens. Les résultats démontrent la pertinence de ces méthodes pour l'analyse de données à haut débit, et l'intérêt de les intégrer dans des pipelines d'analyse de motifs. / Transcription Factors (TFs) are DNA-binding proteins that control gene expression. TF binding motifs (TFBMs, simply called “motifs”) are usually represented as Position Specific Scoring Matrices (PSSMs), which can be visualized as sequence logos. The advent of high-throughput methods has allowed the detection of thousands of motifs which are usually stored in databases. In this work I developed two novel methods and implemented software tools to handle large collection of motifs in order to extract interpretable information from high-throughput data: (i) matrix-clustering regroups motifs by similarity and offers a dynamic interface; (2) position-scan detects TFBMs with positional preferences relative to a given reference location (e.g. ChIP-seq peaks, transcription start sites). The methods I developed have been evaluated based on control cases, and applied to extract meaningful information from different datasets from Drosophila melanogaster and Homo sapiens. The results show that these methods enable to analyse motifs in high-throughput datasets, and can be integrated in motif analysis workflows.
|
2 |
RNA-binding motifs of hnRNP K are critical for induction of antibody diversification by activation-induced cytidine deaminase / hnRNP KのRNA結合モチーフはAIDによる抗体多様性に必須であるYin, Ziwei 27 July 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医科学) / 甲第22698号 / 医科博第113号 / 新制||医科||8(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 竹内 理, 教授 椛島 健治, 教授 河本 宏 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
3 |
Identification of de novo Transcription Factor Binding Motifs Created by Cancer-related MutationsLi, Siqi January 2022 (has links)
In many countries, cancer is one of the biggest threats for citizens’ health, especially among aged people. Genomic mutations play a crucial role in cancer cell development. In previous decades, cancer research has been mainly focused on mutations in coding regions. These mutations can directly change the encoded protein sequences and influence their functions. In recent years, as the function of non-coding regions has been gradually understood, a growing number of studies have focused on the role of non-coding mutations in cancer. Transcription factor (TF) is an important group of gene regulatory factors. These factors only bind to specific sequences called transcription factor binding motifs (TFBMs) in the genome. Mutations in these motifs can disrupt the TF binding and thus influence gene regulation. A framework called funMotifs was made to predict and annotate functional TFBMs in the human genome. And a research has been made to intersect the mutation information from Pan-Cancer Analysis of Whole Genomes (PCAWG) to motifs in funMotifs, aiming to give a general view of influence of cancer-related mutations on functional TF motifs. But the research only focused on the existing motifs that were identified previously from the normal genome, while de novo motifs that could be potentially created by mutations were disregarded. An instance near the TERT promoter has been found, showing that mutations create a de novo ETS binding site and up-regulate the TERT expression. My study aims to extend the borderline of funMotifs, from existing motifs to de novo motifs created by cancer-related mutations. I extended the original motifs in funMotifs database and merged the overlapping motifs into longer regulatory elements. Then I mutated these elements according to the mutation data from PCAWG. Next I scan through the mutated elements and identify TF motifs. These motifs were then intersected with original motifs in funMotifs database to remove the redundant results. After intersection and filtering, 2,525,771 de novo motifs were retained. These motifs mainly come from C2H2 zinc finger factors, tryptophan cluster factors, STAT domain factors, fork head/winged helix factors, MADS box factors and homeo domain factors. Even though the de novo motifs I found in this study still need further verification and analysis, for example the change of information content in the mutated sites of the motifs, the result I obtained can be a useful data source for further research on regulatory impact from cancer-related mutations. / <p></p><p></p><p></p><p></p><p></p>
|
4 |
Structural and Functional Regulation of the Human Chloride/Proton ClC-5 by ATP and Scaffold NHERF2 InteractionsWellhauser, Leigh Anne 18 January 2012 (has links)
The chloride/proton antiporter ClC-5 is primarily expressed in the kidney where it aids in re-absorption of proteins from the glomerular filtrate. Functional disruption of ClC-5 causes Dent’s Disease – a renal condition characterized by proteinuria and kidney failure in a third of all cases. The majority of disease-causing mutations translate into premature truncations of the carboxy-terminal (Ct) region of ClC-5 and are predicted to disrupt the protein-protein interactions mediated by this domain. In this thesis, direct ATP binding to the two cystathionine β-synthase (CBS) domains of ClC-5 was demonstrated. ATP binding enhanced the global compactness of the ClC-5 Ct region likely through a clamping motion of the CBS domains around the nucleotide. Along with ATP, the sodium proton exchange regulatory factor 2 (NHERF2) also binds ClC-5; however, the molecular mechanism behind this interaction was unknown as ClC-5 lacked the PDZ binding motif traditionally localized at the Ct end of bait proteins. Here, we also identified a class I PDZ binding motif (657-660; TSII) within the internal sequence of ClC-5. Despite the buried position of this motif in the Ct peptide’s X-ray crystal structure (PDB: 2J9L), the high propensity of this region for dynamic flexibility prompted us to test whether it could mediate NHERF2 interactions. In support of this hypothesis, we demonstrated that the motif is transiently available to interact directly with NHERF2 in vivo and to enable an enhancement in receptor-mediated endocytosis in mammalian cells. Collectively, these results gave further evidence that the intracellular Ct region of ClC-5 serves as a hub to mediate interactions essential for its maturation, stability, and trafficking in renal epithelium, as well as providing further insights into the molecular basis of Dent’s Disease.
|
5 |
Structural and Functional Regulation of the Human Chloride/Proton ClC-5 by ATP and Scaffold NHERF2 InteractionsWellhauser, Leigh Anne 18 January 2012 (has links)
The chloride/proton antiporter ClC-5 is primarily expressed in the kidney where it aids in re-absorption of proteins from the glomerular filtrate. Functional disruption of ClC-5 causes Dent’s Disease – a renal condition characterized by proteinuria and kidney failure in a third of all cases. The majority of disease-causing mutations translate into premature truncations of the carboxy-terminal (Ct) region of ClC-5 and are predicted to disrupt the protein-protein interactions mediated by this domain. In this thesis, direct ATP binding to the two cystathionine β-synthase (CBS) domains of ClC-5 was demonstrated. ATP binding enhanced the global compactness of the ClC-5 Ct region likely through a clamping motion of the CBS domains around the nucleotide. Along with ATP, the sodium proton exchange regulatory factor 2 (NHERF2) also binds ClC-5; however, the molecular mechanism behind this interaction was unknown as ClC-5 lacked the PDZ binding motif traditionally localized at the Ct end of bait proteins. Here, we also identified a class I PDZ binding motif (657-660; TSII) within the internal sequence of ClC-5. Despite the buried position of this motif in the Ct peptide’s X-ray crystal structure (PDB: 2J9L), the high propensity of this region for dynamic flexibility prompted us to test whether it could mediate NHERF2 interactions. In support of this hypothesis, we demonstrated that the motif is transiently available to interact directly with NHERF2 in vivo and to enable an enhancement in receptor-mediated endocytosis in mammalian cells. Collectively, these results gave further evidence that the intracellular Ct region of ClC-5 serves as a hub to mediate interactions essential for its maturation, stability, and trafficking in renal epithelium, as well as providing further insights into the molecular basis of Dent’s Disease.
|
Page generated in 0.23 seconds