• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 18
  • 4
  • 1
  • 1
  • Tagged with
  • 54
  • 23
  • 13
  • 12
  • 8
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Quantitative Analysis of Tobacco Specific Nitrosamine in Human Urine Using Molecularly Imprinted Polymers as a Potential Tool for Cancer Risk Assessment

Shah, Kumar 18 November 2009 (has links)
Measuring urinary tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronide conjugate may provide the best biomarker of tobacco smoke lung carcinogen metabolism. Existence of differences in the extent of NNAL metabolism rates may be potentially related to an individuals’ lung cancer susceptibility. Low concentrations of NNAL in smokers urine (<1 ng/mL) require sensitive and selective methods for analysis. Traditionally, this involves extensive, time-consuming sample preparation that limits throughput and adds to measurement variability. Molecularly imprinted polymers (MIPs) have been developed for the analysis of urinary NNAL by offline cartridge extraction combined with LC-MS/MS. This method when reproduced demonstrated problems with matrix effects. In the first part of this work, investigation of matrix effects and related problems with sensitivity for the published offline extraction method has been conducted. In order to address the need to improve throughput and other analytical figures of merit for the original method, the second part of this work deals with development of a high-throughput online microfluidic method using capillary-columns packed with MIP beads for the analysis of urinary NNAL. The method was validated as per the FDA guidance, and enabled low volume, rapid analysis of urinary NNAL by direct injection on a microfluidic column packed with NNAL specific MIP beads. The method was used for analysis of urinary NNAL and NNAL-Gluc in smokers. Chemometric methods were used with this data to develop a potential cancer-risk-assessment tool based on pattern recognition in the concentrations of these compounds in urine. In the last part, method comparison approaches for the online and the offline sample extraction techniques were investigated. A ‘fixed’ range acceptance criterion based on combined considerations of method precision and accuracy, and the FDA bioanalytical guidance limits on precision and accuracy was proposed. Data simulations studies to evaluate the probabilities of successful transfers using the proposed criteria were performed. Various experimental designs were evaluated and a design comprised of 3 runs with 3 replicates each with an acceptance range of ±20% was found appropriate. The off-line and the on-line sample extraction methods for NNAL analysis were found comparable using the proposed fixed range acceptance criteria.
52

Imagerie IRTF de haute résolution des interactions cellules-fibres pour l'étude des effets pathogènes des amiantes / High resolution FTIR imaging of fibers / cell interactions for the study of the pathological effect of asbestos

Yao, Seydou 07 November 2012 (has links)
Les maladies pulmonaires tel que l’amiantose ou le mésotheliome proviennent de l‘interaction entre les fibres d’amiantes et les cellules humaines. L’hétérogénéité morphologique et chimique des fibres nous oblige à disposer de moyens analytique capable d’analyser l’interaction organique – inorganique. Nos travaux ont pour but de développer une méthodologie d'imagerie infrarouge couplé avec le rayonnement synchrotron. Grâce à cette technique, nous pourrons analyser les effets des fibres d'amiantes sur une cellule unique. La méthodologie a été testée sur des cellules cultivées directement sur des substrats transparents à l'infrarouge. Les expériences réalisées ont été étendu à l'imagerie Raman in vitro de cellule individuelle vivante en interaction avec différents types de fibres afin de mieux évaluer l'effet pathogène de celle ci sur les cellules pulmonaire. / Lung disease as asbestosis and mesothelioma come from the interaction between asbestos fibers and human cells. The morphological and chemical heterogeneity of these fibers leads us to use analytical techniques capable of analyzing the organic/inorganic interaction. Our work aims the development of FTIR method couple with the synchrotron radiation. Thanks to that technique, we could analyse the effects of the asbestos fibers on a lung human cell. These technique has been developped on cultured cells directly on IR transparent substrates. The experimentation have been developped to in vitro RAMAN imaging of individual living cell in interaction with different types of fibers. The goal was a better understanding of the pathological effect of the asbestos fibers on the human lung cells.
53

DEVELOPMENTS AND APPLICATIONS IN AMBIENT MASS SPECTROMETRY IMAGING FOR INCREASED SENSITIVITY AND SPECIFICITY

Daniela Mesa Sanchez (14216684) 06 December 2022 (has links)
<p> Mass spectrometry imaging (MSI) is an advanced analytical technique that renders spatially defined images of complex label-free samples. Nanospray desorption electrospray ionization (nano-DESI) MSI is an ambient ionization direct liquid extraction technique in which analytes are extracted by means of a continuous liquid flow between two fused-silica capillaries. The droplet generated between the two capillaries is controlled by a delicate balance of solvent flow, solvent aspiration, capillary angles, and distance from the surface. This technique produces reproducible ion images with up to 10 µm resolution and can be used to identify and quantify multiple analytes on a given surface.  This thesis discusses some of the applications of this technique to biological systems, as well as the work done to develop methodology to further improve this technique’s specificity and sensitivity. Herein, applications that push the limits of the current capabilities of nano-DESI are presented, such as the high-resolution imaging of lipid species in skeletal muscle at the single-fiber level, and the quantification of low-abundance drug metabolites.  The second theme of this thesis, developing new capabilities, introduces ion mobility mass spectrometry imaging. This integrated technique increases the selectivity previously possible with MSI. To support these efforts, the work in this thesis has generated data analysis workflows that not only make these experiments possible but also further endeavor to increase sensitivity and combat instrument limitations on mobility resolution. Finally, this thesis present streamlined workflows for tandem MS experiments and modifications to a recently introduced microfluidic variant of the nano-DESI technique. In all, this thesis showcases the current capabilities of the nano-DESI technique and lays the groundwork for future improvements and capabilities.      </p>
54

Quantification of Pharmaceuticals at the sub-cellular level using the NanoSIMS

Dost, Maryam January 2024 (has links)
Mass spectroscopy imaging (MSI) has become a vital tool in modern research due to its ability to visualize the spatial distribution of molecules within tissue samples. The collaboration between researchers at AZ, the University of Gothenburg, and Chalmers University of Technology using the NanoSIMS instrument and MSI-SIMS technology has opened up new avenues of exploration in pharmaceutical development, particularly in examining drugs and metabolites at sub-cellular levels. This groundbreaking research has the potential to significantly improve the efficacy and safety of future pharmaceutical products. NanoSIMS possesses a unique imaging and processing technique that enables high-resolution imaging of cellular structures and subcellular compartments. This powerful tool allows for the visualization and measurement of elements and isotopes at the subcellular level. The technique involves bombarding a sample with a focused primary ion beam, which causes the emission of secondary ions. These secondary ions are then analyzed to determine the elemental and isotopic composition of the sample. NanoSIMS is particularly useful for analyzing biomolecules since traditional Mass spectrometry methods cannot provide information about how molecules behave at the cellular level. Given that many of the drugs used today have intra-cellular targets, hence understanding the drug's cellular pathways is extremely important, especially in cases where the risk for organ toxicity is high due to the high dosage of the drugs.  Our data from the image analysis indicated the presence of amiodarone inside the lysosomes; however, the lack of enrichment from the 13C portion of the dual-labeled molecule made it difficult to reach a variation below the LOD. Since our LOD is relatively high when working with 13C12C, we focused on the fact that accuracy, precision, and sensitivity would be the most crucial factors in our study. After adjusting these parameters, we obtained an image that made the measurement possible. This project aims to utilize a dual-labeled drug (13C and 127I) to bridge the absolute quantification ability of the 13C labeling scheme to the more sensitive labeling scheme. The focus of this study lies therefore on optimization and the relationship between Spatial resolution, Sensitivity, Mass Resolution, Accuracy, and Precision. This technique is extremely promising, but the limit of detection is relatively high mainly due to the high percentage of carbon in the sample. Despite this fact, we were able to present some valuable data.  Our analysis showed that the sensitivity of the 127I is much better than 13C, however, we produced an image where the ratio between the labels was above the detection limit. Using this data, a Relative sensitivity factor (RSF) value was measured, and the concentration of the drug could be estimated by applying the quantification equation.

Page generated in 0.0741 seconds