• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Deflection Measurement System for the Hybrid III Six-Year Old Biofidelic Abdomen

Gregory, Thomas S. 30 January 2013 (has links)
Despite advancements in automotive safety, motor vehicle collisions remain the leading cause of unintentional death for children ages 5 to 14. Enhancement of child occupant protection depends on the ability to accurately assess the effectiveness of restraint systems. Booster seat design and proper belt fit require evaluation using child anthropomorphic test devices, yet biofidelity of the abdomen and pelvis of the current anthropomorphic test device, the Hybrid III 6-year-old, needs improvement. Further, measurement of abdominal deflection is needed for quantification of the degree of submarining and associated potential injury risk. A biofidelic abdomen for the Hybrid III 6-year-old dummy is being developed by the Ford Motor Company. A practical measurement system for the biofidelic abdominal insert has been developed and demonstrated for three dimensional determination of abdominal deflection. Quantification of insert deflection is achieved via differential signal measurement using electrodes mounted within a conductive medium. Signal amplitude is proportional to the distance between the electrodes. A microcontroller is used to calculate distances between ventral electrodes and a dorsal electrode in three dimensions. This system has been calibrated statically, as well as evaluated dynamically. Its performance has also been demonstrated in a series of sled tests. Deflection measurements from the instrumented abdominal insert showed clear differences between two booster seat designs, yielding an average peak anterior to posterior displacement of the abdomen of 1.0 ± 3.4 mm and 31.2 ± 7.2 mm for the seats, respectively. Implementation of a 6-year-old abdominal insert with the ability to evaluate submarining potential will likely advance the effectiveness of booster seat design and restraint performance, and help mitigate child occupant injury severity in automobile collisions. / Master of Science
2

Finite Element Analysis of Traumatic Brain Injury due to Small Unmanned Aircraft System Impacts on the Human Head

Smith, Alex Nelson 03 May 2019 (has links)
A biofidelic finite element model was developed from an acquired set of CT scans for a range of human head and UAS impacts to provide simulations of multiple velocity scenarios of impact severity at four impact orientations on the human head. The hypothesis was that a correlation existed between the total amounts of kinetic energy of the impact from the UAS and human head collision, as well as that location of impact plays a role in the injury risk sustained. Linear acceleration, angular velocity, and pressure data values were calculated for each individual simulated case and then further correlated to injury risks that represent the severity of damage that would be sustained from the collision. Resulting data proved to show that impact kinetic energy, impact orientation, and impact response of the head and UAS all play vital roles in the amount of damage that is sustained from the impact collisions.

Page generated in 0.0542 seconds