• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 203
  • 134
  • 39
  • 39
  • 17
  • 10
  • 9
  • 7
  • 7
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 571
  • 114
  • 110
  • 68
  • 68
  • 58
  • 53
  • 48
  • 47
  • 43
  • 42
  • 40
  • 36
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Acute cardiovascular effects of biofuel exhaust exposure

Unosson, Jon January 2014 (has links)
Background Anthropogenic air pollution is a global health problem estimated to contribute to millions of premature deaths. Exposure to biomass smoke is common due to varying sources, such as wildfires, indoor cooking over open fires, and residential heating from wood stoves. In urban environments transportation and industry rely heavily on the combustion of fossil fuels yet environmental policies increasingly support a shift to renewable fuels such as biodiesel. It has not been investigated how either wood smoke or biodiesel exhaust affect human health in general or the cardiovascular system in particular. We hypothesized that wood smoke exposure would induce acute cardiovascular impairment via similar underlying mechanisms as have been established for petrodiesel exhaust exposure. We also hypothesized that replacing petrodiesel with biodiesel, as a blend or pure biodiesel, would generate an exhaust profile with a less harmful effect on the cardiovascular system than petrodiesel exhaust. Methods In four separate studies healthy non-smoking subjects were exposed to different air pollutants in controlled exposure chambers followed by clinical investigations of the cardiovascular system. All studies were performed as randomized controlled trials in a crossover fashion with each individual acting as her own control. In study I healthy volunteers were exposed to wood smoke at a target concentration of particulate matter (PM) 300 µg/m3 for three hours followed by measures of blood pressure, heart rate variability and central arterial stiffness. In study II subjects were exposed to wood smoke at a target concentration of PM 1000 µg/m3 for one hour followed by measures of thrombus formation using the Badimon technique and vasomotor function using forearm venous occlusion plethysmography. In study III subjects were exposed to petrodiesel exhaust and a 30% rapeseed methyl ester (RME30) biodiesel blend for one hour at a target concentration of PM 300 µg/m3. Following exposure, thrombus formation and vasomotor function were assessed as in study II. In study IV subjects were exposed to petrodiesel exhaust at a target concentration of PM 300 μg/m3for one hour and pure rapeseed methyl ester (RME100) exhaust generated at identical running conditions of the engine. Following exposure, thrombus formation and vasomotor function were assessed as in study II and III. Results In study I fourteen subjects (8 males) were exposed to wood smoke at P M 294±36 μg/m3. Compared to filtered air exposure, measures of central arterial stiffness were increased and heart rate variability was decreased following wood smoke exposure. No effect was seen on blood pressure. In study II sixteen males were exposed to wood smoke at PM 899±100 μg/m3. We found no evidence of increased thrombus formation or impaired vasomotor function following wood smoke exposure. In study III sixteen subjects (14 males) were exposed to petrodiesel exhaust (PM 314±27 µg/m3) and RME30 exhaust (PM 309±30 µg/m3). Thrombus formation and vasomotor function were equal following either exposure. In study IV nineteen males were exposed to petrodiesel exhaust (PM 310±34 µg/m3, 1.7±0.3 x105 particles/cm3) and RME100 exhaust (PM 165±16 µg/m3, 2.2±0.1 x105 particles/cm3). As in study III, thrombus formation and vasomotor function were identical following both exposures. Conclusions We have for the first time demonstrated that wood smoke exposure can increase central arterial stiffness and decrease heart rate variability in healthy subjects. We did not, however find evidence of increased thrombus formation and impaired vasomotor function following wood smoke exposure at a higher concentration for a shorter time period. We have, for the first time, demonstrated that exhaust from RME biodiesel induced acute adverse cardiovascular effects of increased thrombus formation and impaired vasomotor function in man. These effects are on par with those seen following exposure to petrodiesel exhaust, despite marked physicochemical differences of the exhaust characteristics.
252

Evanescent Photosynthesis: A New Approach to Sustainable Biofuel Production

Ooms, Matthew 26 November 2012 (has links)
Immobilization of photosynthetic cultures has been used to generate biofuels and high value compounds through direct conversion of CO2 and water using sunlight. Compared with suspended cultures, immobilized bacteria can achieve much higher densities resulting in greater areal productivity. Limitations exist however, on the density that can be reached without compromising access to light and other nutrients. In this thesis an optofluidic approach to overcoming the challenge of light delivery to high density cultures of cyanobacteria is described and proof of concept experiments presented. This approach uses optical waveguides to deliver light to cells through bacterial interaction with the evanescent field and is tailored to meet each cell's need for light and nutrients. Experiments presented here demonstrate biofilm proliferation in the presence of evanescent fields. Illumination of surfaces by surface plasmon enhanced evanescent fields is also shown to be an effective and potentially useful technique to grow biofilms within optofluidic architectures.
253

Pyrolysis and gasification of lignin and effect of alkali addition

Kumar, Vipul 19 March 2009 (has links)
Lignin, a byproduct of the chemical pulping can be gasified to produce fuel gas and value-added products. Two lignins, MeadWestvaco (MWV) lignin and Sigma Aldrich (SA) lignin, were studied using two different reactors. A laminar entrained flow reactor (LEFR) was used initially to determine the effect of lignin type, temperature and residence time on char yield and fixed carbon conversion during pyrolysis and gasification. During both pyrolysis and gasification, the maximum decrease in char yield took place in the initial stage of the reaction and there was little change at longer residence times. There was not much difference between pyrolysis and gasification in the residence times obtained in the LEFR. Furthermore, a thermogravimetric analyzer (TGA) was used to study the effect of lignin type on pyrolysis and gasification. The reaction rates and char yields were affected by the lignin composition. Lignin pyrolysis showed similar behavior until 600°C but only the high-ash SA lignin showed secondary pyrolysis reactions above 600°C. Carbon gasification reactions were delayed in SA lignin. Na2CO3 addition made the primary pyrolysis reaction occur at a lower rate and enhanced the rate for secondary pyrolysis reactions. Fourier Transform Infrared (FTIR) Spectroscopy results showed that the significant loss of spectral detail started at different temperatures for MWV lignin and SA lignin. Kinetic parameters obtained using differential and Coats - Redfern integral method were comparable at lower temperatures but varied at high temperatures. Na2CO3 addition decreased the activation energy of primary pyrolysis.
254

Three Essays on Climate Change Impacts, Adaptation and Mitigation in Agriculture

Wang, Wei Wei 2012 August 1900 (has links)
This dissertation investigates three economic aspects of the climate change issue: optimal allocation of investment between adaptation and mitigation, impacts on a ground water dependent regional agricultural economy and effects on global food insecurity. This is done in three essays by applying mathematical programming. In the first essay, a modeling study is done on optimal temporal investment between climate change adaptation and mitigation considering their relative contributions to damage reduction and diversion of funds from consumption and other investments. To conduct this research, we extend the widely used Integrated Assessment Model?DICE (Dynamic Integrated Climate Economy) adding improved adaptation modeling. The model results suggest that the joint implementation of adaptation and mitigation is welfare improving with a greater immediate role for adaptation. In the second essay, the research focuses on the ground water dependent agricultural economy in the Texas High Plains Region. A regionally detailed dynamic land allocation model is developed and applied for studying interrelationships between limited natural resources (e.g. land and groundwater), climate change, bioenergy demands and agricultural production. We find out that the effect varies regionally across hydrologically heterogeneous regions. Also, water availability has a substantial impact on feedstock mix. In terms of biofuel feedstock production, the model results show that limited water resource cannot sustain expanded corn-based ethanol production in the future. In the third essay, a Computable General Equilibrium (CGE) model is applied in an attempt to study potential impacts of climate change on global food insecurity. Our results show that climate change alters the number of food insecure people in a regionally different fashion over time. In general, the largest increase of additional food insecure population relative to the reference case (no climate change) is found in Africa and South Asia, while most of developed countries will benefit from climate change with a reduced proportion of food insecure population. In general, climate change affects world agricultural production and food security. Integrated adaptation and mitigation strategy is more effective in reducing climate change damages. However, there are synergies/trade-offs between these two options, particularly in regions with limited natural resources.
255

Development of a time/temperature logging device to characterise the burning characteristics of biofuels

Smit, Hendrik Christiaan 03 1900 (has links)
Thesis (MScFor (Forest and Wood Science))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: A lab scale combustion unit was designed, in order to characterise the performance of various woody and wood-based biofuels commonly used for energy production, cooking and heating. The unit was constructed in a way that it could be repeatedly reused and provide similar testing conditions, such as airflow for all samples. The requirements were that it was big enough to contain a fire large enough to yield good time/temperature profiles and at the same time easy to handle, operate and clean. It also had to allow the insertion of the thermocouples and flue gas probe. Time / temperature profiles were obtained and O2, CO2 and CO levels in the flue gas determined for each biofuel. The samples consisted of the five most commonly used fuel wood species in the Western Cape, namely Rooikrans, Camelthorn, Bluegum, Black wattle and vine stumps and five processed products, namely wood pellets, wood briquettes, commercial charcoal, commercial briquettes and handmade briquettes. Combustion time/temperature profiles were obtained for all samples and characteristic values, such as the maximum temperature and coal temperature compared. This allowed an indication of which product performed better than others in the different combustion phases and is more suitable for different requirements, such as industrial heating, or domestic cooking. Even though Bluegum and Camelthorn performed best overall they were not necessarily suited, for example, for large scale industrial use. It was found that wood pellets and charcoal were the best biofuel for industrial purposes, whereas Rooikrans was found to be the best option for small scale use. / AFRIKAANSE OPSOMMING: ‘n Laboratoriumskaal verbrandingseenheid was ontwerp vir die toets en karakterisering van verskeie houtgebaseerde biomassa soorte algemeen in gebruik vir energie opwekking, kook en verhitting. Daar was besluit om ‘n eenheid te bou vir herhaalde gebruik wat die omstandinghede vir elke toets konstant kan hou, bv. ‘n damper om lugvloei deur die sisteem the beheer. Die eenheid moet groot genoeg wees om veilig ‘n groot genoeg vuur the bevat waarmee ‘n goeie tyd/temperatuur profiel verkry kan word, maar terselfdetyd klein genoeg wees om te hanteer, operateer en skoon te maak. Die eenheid moes ook voorsiening maak vir die insteek van die termostate en gas peilstif. Tyd/temperatuur profiele is verkry en O2, CO2 en CO vlakke in die uitlaatgas is bepaal vir elke bio-brandstof. Die monsters was saamgestel uit vyf van die mees algemeen gebruikte brandhout spesies in die Wes Kaap, naamlik Rooikrans, Kameeldoring, Bloekom, Swartwattel en wingerdstompies, asook vyf geprosesseerde produkte naamlik houtpille, houtbrikette, kommersiële steenkool, kommersiële brikette and handgemaakte brikette. Verbranding tyd/temperatuur profiele is verkry vir al die monsters en verteenwoord waardes is daarvan afgelees, bv. die maksimum temperatuur wat bereik is of die temperatuur waar die vlamme uitgesterf het en slegs koolhitte gemeet word. Hierdie profiele het dit moontlik gemaak om te identifiseer watter produk het beter gevaar as ander gedurende die verskillende verbrandingsfases en is beter gepas vir verskillende gebruike, bv. huishoudelike kook en verhitting. Resultate het gedui dat die Bloekom en Kameeldoring die beste gevaar het oor all die toetse heen, maar was nie noodwendig ideaal vir elke spesifieke doel nie. Dit was bevind dat die steenkool en houtpille die beste gepas is vir industriele gebruik en dat die Rooikrans beter geskik is vir huishoudelike en kleinskaalse gebruik.
256

Desenvolvimento de uma célula para medição de propriedades de líquidos por ultrassom com manipulação de amostras através de cubetas /

Tiago, Marcelo Moreira. January 2018 (has links)
Orientador: Ricardo Tokio Higuti / Resumo: Este trabalho apresenta o desenvolvimento de um sistema de medição de propriedades de líquidos por ultrassom, tais como velocidade de propagação e coeficiente de atenuação, com as seguintes características: modo de operação pulsado em transmissão-recepção, faixa de frequências entre 20 e 80~MHz, controle de temperatura com variações menores do que 0,01ºC, além do uso de cubetas descartáveis e/ou esterilizáveis com volume menor ou igual a 3 ml. Células Peltier controladas eletronicamente foram utilizadas como atuadores térmicos para o controle de temperatura da célula de medição proposta, e também, para o controle da temperatura de uma caixa térmica utilizada para minimizar os efeitos das variações da temperatura ambiente na amostra. Testes de estabilidade com água destilada mostraram que a temperatura controlada apresenta uma variação menor que 0,01ºC, e que a incerteza para medidas de velocidade de propagação é da ordem de 5 cm/s, a uma temperatura de 25ºC e frequência de 50 MHz. Em relação as medidas de atenuação, o sistema apresentou incertezas na ordem de 0,3 dB/cm para água destilada a 25ºC. Foram realizados ensaios com misturas de água e NaCl, que apresentam valores de atenuação mais baixos que os da água destilada e com amostras de óleos de rícino e de silicone, que apresentam valores de atenuação elevados. Como exemplos de aplicação, a célula de medição foi utilizada para medir propriedades de biocombustíveis, tais como concentração de água em misturas de água e etano... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This work describes the development of an ultrasonic spectrometer for liquids, which operates in the frequency range from 20 MHz to 80 MHz. Important characteristics are its high thermal stability (better than 0.01ºC) and practical sample handling by the use of commercial cuvettes, which have small volumes (<3 ml) and can be easily removed from the spectrometer, cleaned/sterilized or simply discarded. Electronically controlled Peltier cells were used as thermal actuators for the temperature control. Through-transmission operation is used to measure propagation velocity and attenuation coefficient with uncertainty in the order of 5 cm/s and 0.03 db/cm, respectively, at 25ºC and 50 MHz. The spectrometer was tested with mixtures of water and NaCl, which have attenuations smaller than that of distilled water, and higher attenuation samples of silicone and castor oil. As a practical application, the spectrometer was used to measure some properties of biofuels, like concentration of water and ethanol mixtures, thermal-degradation effects in soybean biodiesel and percentage of biodiesel in mixtures of diesel and biodiesel. / Doutor
257

Utilização de vinhaça no cultivo de Chlorella sp. / Use of vinasse in the cultivation of Chlorella sp.

MELO, Débora Jamila Nóbrega de. 21 March 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-03-21T16:54:52Z No. of bitstreams: 1 DÉBORA JAMILA NÓBREGA DE MELO - DISSERTAÇÃO PPGEQ 2015..pdf: 1660411 bytes, checksum: 435dc571b5f61082152afe1a09c340cb (MD5) / Made available in DSpace on 2018-03-21T16:54:52Z (GMT). No. of bitstreams: 1 DÉBORA JAMILA NÓBREGA DE MELO - DISSERTAÇÃO PPGEQ 2015..pdf: 1660411 bytes, checksum: 435dc571b5f61082152afe1a09c340cb (MD5) Previous issue date: 2015-09 / CNPq / Diante da futura escassez dos recursos energéticos originados do petróleo e seus derivados, aliados aos impactos ambientais causados pelo consumo desenfreado de recursos naturais, faz-se necessário a busca por produção de energias alternativas e limpas. Nesse ínterim, surgem as microalgas como potenciais de produção de biocombustíveis, por sua elevada taxa de crescimento e capacidade produtiva de lipídios e carboidratos. Porém, o alto custo de manutenção ainda inviabiliza sua produção. Dessa forma, esse trabalho busca aumentar a produção de microalgas utilizando a vinhaça, um resíduo da indústria sucroalcooleira altamente nutritivo e poluidor, e reutilizando resíduos do próprio cultivo como suplementação nutricional ao meio de cultura. A microalga Chlorella sp. foi cultivada em meio Bold’s Basal Medium (BBM) modificado, suplementado com de 5, 10 e 15% de vinhaça e resíduos de cultivos com diferentes concentrações, reutilizados por até três vezes. O sistema de cultivo adotado foi o mixotrófico. Foram calculadas as velocidades específicas de crescimento máximas e os tempos de geração dos cultivos suplementados com vinhaça e resíduos de cultivos. Calcularam-se as remoções de Demanda Química de oxigênios dos cultivos suplementados com vinhaça. Foram quantificados os teores de açúcares redutores e lipídios das biomassas cultivadas com 10% de vinhaça e sem suplementação. Foi verificado que os cultivos suplementados com 5 e 10% de vinhaça apresentaram maior densidade celular que o cultivo sem suplementação. As taxas de crescimento máximas e os tempos de geração dos cultivos com 5 e 10% de vinhaça foram muito próximas, diferente do cultivo suplementado com 15% de vinhaça que apresentou inibição no crescimento. As remoções de DQO foram elevadas e em média 85%. A utilização dos resíduos de cultivos favoreceu o crescimento das microalgas, apresentando melhores resultados os cultivos suplementados com resíduos de segunda reutilização, em especial os cultivos suplementados com resíduos originados de um cultivo com adição de vinhaça. A biomassa da Chlorella sp. cultivada com suplementação de 10% de vinhaça apresentou 11,50% de lipídios, 0,33% de açúcares redutores. Estudos mais aprofundados devem ser realizados para uma melhor caracterização da biomassa para verificar a influência da suplementação do meio com vinhaça na produção de proteínas e carboidratos totais. / In the face of future scarcity of energy resources derived from oil and its derivatives, coupled with the environmental impacts caused by rampant consumption of natural resources, it is necessary to search for a renewable and clean energy. In the meantime, there are microalgae with potential of biofuel production due to its high growth rate and productivity capacity of lipids and carbohydrates. However, the high cost of maintenance still prevents its manufacture. In this way, the present work aims to increase the production of microalgae using vinasse which is a residue of highly nutritious sugarcane industry and a polluter, and reusing waste from the own cultivation as a nutritional supplement to the culture medium. The microalgae Chlorella sp. was grown in a modified Bold's Basal Medium (BBM), supplemented with 5, 10 and 15% of vinasse and residues of cultivations with different concentrations in what they were reused at maximum of three times. The adopted cultivation system was the mixotrophic. Calculations were made to obtain the specific maximum speed of growth and the generation times of cultivations supplemented with vinasse and cultivation waste. Also, it was calculated the removals of Chemical Oxygen Demand (COD) of cultivations supplemented with vinasse. For the next step, it was quantified the reducing sugars and lipids of biomass cultivated with 10% of vinasse and without supplementation. It was verified that the cultivation supplemented with 5 and 10% of vinasse showed higher cell density than the unsupplemented cultivation. The maximum growth rates and generation times of cultivations with 5 and 10% of vinasse were very close whereas cultivation supplemented with 15% of vinasse showed growth inhibition. The removals of COD were high and averaged at 85%. The use of cultivation residue has favored the microalgae growth, presenting best results for the cultures supplemented with second reuse waste, in particular cultures supplemented with residues derived from a culture with addition of vinasse. The biomass of cultivated Chlorella sp. with supplementation of 10% of vinasse showed 11.50% lipids, 0.33% of reducing sugars. Further studies should be performed to better characterize the biomass to check the influence of the medium supplementation with vinasse in the production of proteins and total carbohydrates.
258

The Potential of Coastal Marine Filtration As a Feedstock Source for Biodiesel

January 2011 (has links)
abstract: Second-generation biofuel feedstocks are currently grown in land-based systems that use valuable resources like water, electricity and fertilizer. This study investigates the potential of near-shore marine (ocean) seawater filtration as a source of planktonic biomass for biofuel production. Mixed marine organisms in the size range of 20µm to 500µm were isolated from the University of California, Santa Barbara (UCSB) seawater filtration system during weekly backwash events between the months of April and August, 2011. The quantity of organic material produced was determined by sample combustion and calculation of ash-free dry weights. Qualitative investigation required density gradient separation with the heavy liquid sodium metatungstate followed by direct transesterification and gas chromatography with mass spectrometry (GC-MS) of the fatty acid methyl esters (FAME) produced. A maximum of 0.083g/L of dried organic material was produced in a single backwash event and a study average of 0.036g/L was calculated. This equates to an average weekly value of 7,674.75g of dried organic material produced from the filtration of approximately 24,417,792 liters of seawater. Temporal variations were limited. Organic quantities decreased over the course of the study. Bio-fouling effects from mussel overgrowth inexplicably increased production values when compared to un-fouled seawater supply lines. FAMEs (biodiesel) averaged 0.004% of the dried organic material with 0.36ml of biodiesel produced per week, on average. C16:0 and C22:6n3 fatty acids comprised the majority of the fatty acids in the samples. Saturated fatty acids made up 30.71% to 44.09% and unsaturated forms comprised 55.90% to 66.32% of the total chemical composition. Both quantities and qualities of organics and FAMEs were unrealistic for use as biodiesel but sample size limitations, system design, geographic and temporal factors may have impacted study results. / Dissertation/Thesis / M.S.Tech Technology 2011
259

Etude des relations entre division cellulaire et métabolisme des triglycérides chez les plantes et les microalgues / Relationships between cell division and triglyceride metabolism in plants and microalgae

Meï, Coline 25 October 2016 (has links)
Trouver des solutions aux carburants fossiles est un des grands challenges du XXIème siècle. Les plantes et les microalgues sont capables de produire de l’huile, facilement convertible en biodiésel. Afin d’optimiser la production de biocarburant, il est essentiel de connaitre les mécanismes cellulaires menant à la formation de ces lipides de réserve aussi appelés TAG (Triacylglycérides). En condition physiologique, le flux de lipide est naturellement orienté vers la synthèse de lipides membranaires qui permettent de créer de nouvelles membranes lors de la division cellulaire. Le manque de nutriments disponibles est une condition souvent rencontrée par les végétaux terrestres et les microalgues. Chez ces dernières, lors d’une en carence d’azote, la croissance cellulaire est ralentie et les TAG s’accumulent. Le flux de lipides, normalement orienté vers la synthèse de nouvelles membranes, est-il alors basculé vers la synthèse des lipides de réserve ? Pour vérifier cette hypothèse, une gamme de composés connus pour arrêter la croissance cellulaire a été testée sur la plante supérieure Arabidopsis thaliana selon une stratégie de génétique chimique. Quel que soit le traitement, l’inhibition de la croissance est toujours accompagnée par une augmentation de la teneur en TAG. Parmi les inhibiteurs, le méthotrexate, qui réprime l’enzyme dihydrofolate réductase impliquée dans le métabolisme C1, induit une augmentation des lipides de réserve jusqu’à 15 fois la valeur du contrôle. Ce traitement a été comparé à une carence en azote, qui dans nos conditions expérimentales, ralentie la croissance cellulaire et augmente d’un facteur 60 la teneur en TAG. L’analyse des profils lipidiques révèle que la déficience en azote engendre une diminution des classes de lipides membranaires -phospholipides et galactolipides, au profit des TAG, tandis que le traitement méthotrexate n’est pas associé à un remaniement membranaire. Néanmoins, les deux conditions partagent des similitudes, comme le taux d’insaturation des acides gras et l’expression des gènes des désaturases qui sont modifiés. La forte expression des gènes codant pour les Non Spécific Phospholipases C (NPC4/5), ainsi que des expériences de pulse-chase avec de la phosphatidylcholine (PC) marquée, ont mis en évidence que ce phospholipide est plus utilisé pour produire des TAG dans les deux traitements, qu’en condition contrôle. Afin d’évaluer plus finement l’importance des enzymes NPC4 et 5 dans le métabolisme d’accumulation des lipides de réserve, la construction de lignées mutantes d’A. thaliana (surexpresseur ou knock-out) a été amorcée. Les microalgues sont des modèles puissants pour les biocarburants de 3ème génération. Pour cette raison nous avons testé l’effet d’une déficience minérale et l’impact de différents inhibiteurs de croissance sur l’accumulation de TAG chez la microalgue Phaeodactylum tricornutum. Les résultats préliminaires suggèrent que la sensibilité aux inhibiteurs peut être différente chez les diatomées et les plantes supérieures. / Alternatives to fossil fuel are one of the biggest challenges of the 21st century. Plants and microalgae are able to produce oil which is easily convertible in biodiesel. In order to optimise the biofuel production it is necessary to know the cellular mechanisms leading to the setting up of these storage lipids or TAG (Triacylglycerides). In its physiological condition, the lipid flux is naturally orientated towards the membrane lipid synthesis, which allows the creation of new membranes which occurs during the cell division. Nitrogen deficiency, a condition often encountered by plants and algae, is known to induce cell growth to slow down and an accumulation of TAG in microalgae models. Is the lipid flux, which is conventionally orientated towards new membrane synthesis, tipped over the storage lipid synthesis? To check this hypothesis, a range of compounds known to stop the cell growth was tested on the higher plant model Arabidopsis thaliana, according to a chemical genetic strategy. All treatments showed a rise of the TAG content associated to a cell growth inhibition. Among them, the methotrexate inhibit the dihydrofolate reductase enzyme involved in the C1 metabolism and induced a TAG accumulation up to 15 times the control. This treatment was compared to a nitrogen starvation condition, which in our experiments slowed down the cell growth and induced an increase of 60 times to the TAG content. The lipid profile analysis revealed that the nitrogen deficiency led to a decrease of membrane lipids -phospholipids and galactolipids, in favour to TAG, whereas the methotrexate treatment was not associated to any membrane remodelling. Nevertheless, both conditions shared similarities, as the modifications of the fatty acid insaturation profile and the expression of desaturase genes. The strong gene expression of Non Specific phospholipases C (NPC4/5) and pulse-chase experiments performed with a labelled phosphatidylcholine (PC), highlighted the predominant involvement of this phospholipid in the TAG production which occurs during the two treatments. In order to evaluate the NPC role in the storage lipid metabolism more closely, A. thaliana mutant lines for NPC4 and NPC5 (over-expressers and knock-out) were initiated. Microalgae are powerful models for the third generation of biofuels. For this reason we tested the impact of a nutrient deficiency as well as the effect of different growth inhibitors on the TAG accumulation in the marine microalgae Phaeodactylum tricornutum. Preliminary results suggested that the inhibitor sensibility can be different between diatoms and higher plants.
260

Elaboration et caractérisation des structures coeur/coquille à base de nanofils de ZnO pour des applications photovoltaïques / Elaboration and characterization of core/ shell structures based on naowires for photovoltaic applications

Karam, Chantal 22 September 2017 (has links)
Le but de cette thèse était de fabriquer des structures cœur / coquille à base de nanofils d’oxyde de zinc (ZnO) pour des applications en photovoltaïques principalement, et ensuite pour des détecteurs UV. Des réseaux de nanofils de ZnO de dimensions contrôlées ont été synthétisés en utilisant la méthode d’électrodéposition de ZnO (ECD). Nous avons également synthétisé des oursins organisés à base de nanofils de ZnO (U-ZnO NWs) en combinant les méthodes de nanostructuration de surface (auto-assemblage de sphères de polystyrène), dépôt de couche atomique (ALD) et ECD de ZnO. Plusieurs approches concernant le contrôle des dimensions de ces nanofils ont été envisagées. Les diamètres, la densité et la morphologie de ces nanofils ont été ajustés soit en modifiant les diamètres des sphères utilisés soit en modulant les paramètres expérimentaux durant la déposition (ALD et/ou ECD). Des monocouches et des multicouches de U-ZnO NWs de longueur variant de 750 nm jusqu'à 1500 nm ont été obtenus dans une large gamme de diamètre (57-170 nm).Ces matériaux ont été utilisés pour la construction de cellules solaires à colorant (DSSC) à base de réseaux de nanofils et des U-ZnO NWs, recouverts de couches minces d’oxyde de titane (TiO2) par dépôt de couches atomiques (ALD). Des rendements de conversion solaire de ~ 2% ont été atteints, sachant que le ZnO absorbe seulement dans l’UV. Ces matériaux ont été également utilisés pour la construction de cellules solaires de type II formés des U-ZnO NWs recouverts de couches d’oxyde de cuivre (Cu2O) de différentes épaisseurs par ECD. Les effets de la morphologie et des dimensions des nanofils et des U-ZnO NWs sur la diffusion de la lumière et la performance électronique des dispositifs ont été étudiés. Des capteurs d’ultraviolet ont été testés en utilisant les nanofils et les U-ZnO NWs. Une amélioration significative de la performance et de la stabilité en matière de détection UV a été observée en utilisant ces nanostructures de ZnO. Cela est dû à l'augmentation de la surface active offerte par les nanofils et les U-ZnO NWs en comparaison avec la performance obtenue avec les couches minces de ZnO. Finalement, une bioélectrode à base de nanofibres de polyacrylonitrile (PAN) recouverts par une couche d’or a été préparée pour la réduction électrochimique du CO2 en biocarburants utiles. L'électrode de PAN / Or a été préparée en utilisant une méthode de synthèse basée sur l'électrofilage suivi d'une pulvérisation d'Or. Une amélioration significative de l'activité électrochimique et de la stabilité de la bioélectrode a été observée. / The aim of this thesis was to fabricate core / shell structures based on zinc oxide (ZnO) nanowires for photovoltaic applications mainly, and UV sensors as well. ZnO nanowire arrays of controlled size were grown using electrodeposition method (ECD). We also synthesized organized urchins based on ZnO nanowires by combining methods of surface nanostructuring (self-assembly of polystyrene spheres), atomic layer deposition (ALD) and electrodeposition of ZnO (ECD). Several approaches concerning the control of dimensions on these nanowires have been investigated. The diameter, density and morphology of these nanowires were adjusted either by modifying the diameters of spheres or by modulating the experimental parameters during deposition (ALD and / or ECD). Organized monolayers and multilayers of urchins based on ZnO nanowires ranging between 750 -1500 nm in length were obtained in a diameter range between 50-170 nm. The construction of dye solar cells (DSSC) was based on nanowire arrays and organized urchins based on ZnO nanowires coated with thin shells of titanium oxide (TiO2) obtained by atomic layer deposition (ALD). As proof of concept, solar conversion efficiencies of ~ 2% were achieved, bearing in mind that ZnO absorbs only in UV range. These materials have also been used for solar cells construction of type II based on organized urchin-like ZnO nanowires coated with copper oxide (Cu2O) layers of different thicknesses by electrodeposition of Cu2O. The effects of the morphology and the dimension of the organized nanowires and urchin-like ZnO nanowires on light scattering and electronic performance of the devices have been studied. UV sensors were tested using nanowires and urchin-like ZnO nanowires. A significant improvement in the performance and stability in UV detection was observed when using these ZnO nanostructures. This is due to the increase in active area offered by the ZnO nanowires and urchins compared to the performance obtained with ZnO thin films. Finally, a bioelectrode based on polyacrylonitrile nanofibers (PAN) coated with a layer of gold has been prepared for the electrochemical reduction of CO2 into useful biofuels. The PAN/gold electrode was prepared using a homemade synthesis method, based on electrospinning followed by gold sputtering. A significant improvement in the electrochemical activity and the stability of the bioelectrode was observed.

Page generated in 0.046 seconds