• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • 1
  • Tagged with
  • 17
  • 12
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Errors in skin temperature measurements.

Dugay, Murielle 12 1900 (has links)
Numerical simulation is used to investigate the accuracy of a direct-contact device for measuring skin-surface temperature. A variation of thermal conductivity of the foam has greater effect on the error rather than a variation of the blood perfusion rate. For a thermal conductivity of zero, an error of 1.5 oC in temperature was identified. For foam pad conductivities of 0.03 and 0.06 W/m-oC, the errors are 0.5 and 0.15 oC. For the transient study, with k=0 W/m-oC, it takes 4,900 seconds for the temperature to reach steady state compared with k=0.03 W/m-oC and k=0.06 W/m-oC where it takes 3,000 seconds. The configuration without the foam and in presence of an air gap between the skin surface and the sensor gives the most uniform temperature profile.
12

Triple-layer Tissue Prediction for Cutaneous Skin Burn Injury: Analytical Solution and Parametric Analysis

Oguntala, George A., Indramohan, V., Jeffery, S., Abd-Alhameed, Raed 08 May 2021 (has links)
Yes / This paper demonstrates a non-Fourier prediction methodology of triple-layer human skin tissue for determining skin burn injury with non-ideal properties of tissue, metabolism and blood perfusion. The dual-phase lag (DPL) bioheat model is employed and solved using joint integral transform (JIT) through Laplace and Fourier transforms methods. Parametric studies on the effects of skin tissue properties, initial temperature, blood perfusion rate and heat transfer parameters for the thermal response and exposure time of the layers of the skin tissue are carried out. The study demonstrates that the initial tissue temperature, the thermal conductivity of the epidermis and dermis, relaxation time, thermalisation time and convective heat transfer coefficient are critical parameters to examine skin burn injury threshold. The study also shows that thermal conductivity and the blood perfusion rate exhibits negligible effects on the burn injury threshold. The objective of the present study is to support the accurate quantification and assessment of skin burn injury for reliable experimentation, design and optimisation of thermal therapy delivery.
13

A Mathematical and Computational Verification of the Use of Localized Infrared Thermology in the Detection of Muscle Recovery Post-Resistance Training

Noble, Harold Joseph, III 11 August 2014 (has links)
No description available.
14

RADIO-FREQUENCY ABLATION IN A RECONSTRUCTED REALISTIC HEPATIC TISSUE

PANDEY, AJIT K. 02 September 2003 (has links)
No description available.
15

Non-Invasive Microwave Hyperthermia

Habash, Riadh W Y 04 1900 (has links)
Presented in this thesis are the following theoretical investigations carried out on the non-invasive microwave hyperthermia of malignant tumours in the human body: Fundamental concepts of electromagnetic wave propagation through a biomass and its interaction with it, are discussed. Various types of applicators used for producing hyperthermia in a biomass, are also discussed. Propagation of a uniform plane electromagnetic wave through a human body is investigated for the general case of oblique incidence. Various models used for the human body have been discussed and the planar multilayer model has been chosen for this study. Reflection and transmission coefficients for both the parallel and perpendicular linear polarisations of the wave, have been determined. For normal incidence, power transfer ratio at the muscle has been defined and calculated at 433, 915 and 2450 MHz (ISM frequencies). Efects of skin thickness and also of fat thickness, on the power transfer ratio at muscle, have been studied. Effects of the thickness and dielectric constant of a bolus, and also of the dielectric constant of an initial layer, on the power transfer ratio, have been studied and their optimum values obtained at the ISM frequencies. For microwave hyperthermia, 915 MHz is recommended as the frequency of operation. Steady-state solution of the bioheat transfer equation has been obtained, assuming the biomass to be a semi-infinite homogeneous medium. Effects of various physical parameters on the temperature profile in the biomass, have been studied. Also studied is the effect of the surface temperature on the magnitude, location and the width of the temperature peak attained in the biomass. A method to determine the microwave power and the surface temperature required to produce a prescribed temperature profile in the biomass, has been developed. The transient-state solution of the bioheat transfer equation has been obtained to study the building up of the temperature profile. Procedures for the design of an open-ended rectangular metal waveguide applicator and for estimating the total microwave power requirement to produce hyperthermia in the human body, have been developed. Performance of the applicators employing linear as well as planar arrays of open-ended rectangular metal waveguide antennas, has also been studied. In order to reduce the overall physical size of the applicators, filling up of the feed waveguide with a high dielectric constant but low loss material is suggested. A simple method of obtaining the elements of the array by partitioning a large aperture by using metal walls has been adopted. Calculation of the total microwave power required by various applicators for producing hyperthermia at various depths in a biomas, have been made and a comparison of the performance of various applicators, has been presented.
16

Analýza elektrických a tepelných jevů při elektroporaci / Analysis of electrical and thermal effects during electroporation

Novotná, Veronika January 2020 (has links)
This dissertation thesis describes a phenomenon called electroporation. It is about its theoretical aspects as well as about modeling of processes in the tissue during electroporation. Further, it describes the technical design of two developed unique experimental generators of DC and AC pulses for electroporation purposes. It also includes a description of experiments which were done using discussed generators.
17

The effect of a three dimensional growth environment on cell death and stress protein expression

Song, Alfred Seunghoon 02 July 2012 (has links)
Understanding the cellular response thermal stress is important for improving thermoablative treatments of cancer. Cells generally respond to thermal stress by expressing heat shock proteins, or undergoing cell death by apoptosis or necrosis. Most of our detailed knowledge regarding these cellular phenomena has been gathered in vitro in two dimensional (2D) environments. Yet, little is known about how prostate cancer cells respond to thermal stress in a more physiologically relevant three dimensional (3D) environment. Several approaches were used to investigate this question, all of which focused on controlled heating of cells in both two dimensional (2D) and 3D culture. Tools and assays were developed to investigate cellular response to thermal stress in 2D and 3D environments. A computer-controlled heating apparatus was constructed to heat cell cultures to precise temperatures and durations. Three dimensional growth environments were produced using Matrigel, a commercially available extracellular matrix (ecm) mixture. Transcriptional expression of heat shock protein 70 (HSP70) was measured using a green fluorescent protein (GFP) reporter gene under the control of an HSP promoter. Apoptosis, necrosis and HSP70 transcription was measured using flow cytometry analysis. Quantitative polymerase chain reaction (qPCR) and microscopy revealed that transmembrane targets may be involved in the mechanism of the effect which 3D culture has on the cellular response to heat shock. The results herein demonstrate that the 3D growth environment, may be protective to the cell in that the percentage of cells that undergo apoptosis or necrosis when exposed to heat shock are reduced. Furthermore, HSP70 expression is enhanced in 3D culture at a specific thermal dose and integrins and heat shock proteins may be part of the mechanism by which the ecm exerts its protective effect against thermal stress. / text

Page generated in 0.0229 seconds