• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Einsatz biokompatibler Polymermembranen zur Therapie kongenitaler Bauchwanddefekte im Rattenmodell / Macrostructured biocompatible scaffolds for the therapy of congenital abdominal wall defects: Collagen-Mesh versus PEG-Polymers – a rat model

Bär, Isabel January 2017 (has links) (PDF)
Kongenitale Bauchwanddefekte sind dramatische Fehlbildungen der vorderen Bauchwand. Zu den Defekten gehören neben der Nabelhernie und dem Blasenextrophie-Komplex im engeren Sinne die Gastroschisis und die Omphalozele. Die Therapie stellt die behandelnden Kinderchirurgen und Neonatologen vor eine große Herausforderung. Methode der Wahl ist der primär operative Bauchdeckenverschluss. Falls aufgrund der Größe des abdominellen Defekts oder der viszeroabdominellen Diskrepanz ein primärer Verschluss nicht möglich ist, wird eine Schusterplastik angelegt oder ein Patch implantiert. Bei den Implantaten unterscheidet man nicht-resorbierbare Materialien wie Polypropylen und Polytetrafluorethylene (GoreTex®) von resorbierbaren Patchs wie zum Beispiel humane Dura, porkine Dünndarmsubmukosa, oder azellularisiertes Rinderperikard (Lyoplant®). Die Ansprüche an ein solches Implantat sind hoch und das perfekte Material wurde bis heute noch nicht gefunden. Ideale Eigenschaften sind eine gute Handhabung und Nähbarkeit, Resorbierbarkeit, Anti-Adhäsivität zum Intestinum, Stabilität und Elastizität sowie die Transplantatakzeptanz. Ziel dieser Arbeit war die Etablierung bipolarer Polymermembranen zur sicheren und effektiven Therapie kongenitaler Bauchwanddfekten im Rattenmodell. Bei den Polymermembranen handelt es sich um zweischichtige Implantate, welche aus einem Film und einem aufgesponnen Vlies bestehen. Der Film besteht aus dem Resomer LR708, dem linearen PEG-PLA und dem Polyurethan CW1681. Der mittels Electrospinning auf den Film aufgebrachte Vlies ist aus reinem PLA. Die Implantate sind zwischen 20 und 67 µm dick. Als Vergleich diente das bereits im Klein- und Großtiermodell von Meyer et al. etablierte Kollagen-Mesh Lyoplant®. Als Versuchstiere des Experiments dienten n=34 männliche Wistar Furth Ratten, denen intraoperativ ein 2 x 2 cm großer Bauchwanddefekt zugeführt wurde, der anschließend mit einem gleich großen Patch verschlossen wurde. N=25 Tiere erhielten eine bipolare Polymermebran, n=2 Tiere Lyoplant und n=7 Ratten dienten zur Kontrolle. Nach 21 Tagen fand ein erneuter Eingriff statt. Hierbei wurde das Implantat samt umliegendem Gewebe explantiert und histologisch ausgewertet. Neben der Gewichtszunahme wurden die Ratten auf die Bildung von Hernien und intraabdominellen Adhäsionen sowie auf histologische Veränderungen untersucht. Von n=34 Ratten verstarben n=9 aus unterschiedlichen Gründen. Alle explantierten Wistar Furth Ratten (n=25) zeigten im dreiwöchigen postoperativen Verlauf (Δt=3 Wochen) physiologische Gewichtskurven. Alle Ratten mit Polymer-Implantat entwickelten im dreiwöchigen Verlauf eine abdominelle Hernie sowie Adhäsionen. Eine Zellinfiltration und Gefäßeinsprossung im Sinne einer Neovaskularisation konnte nicht nachgewiesen werden. Die histologische Auswertung ergab eine bindegewebige Veränderung im angren-zenden Gewebe, die zusammen mit der immunhistochemisch gesicherten hohen Anzahl an CD68 positiven Zellen (Makrophagen) einer Immunreaktion über den TH1-Pathway entspricht. Bei fehlender Integration in das Gewebe, kommt dies einer Implantatabstoßung gleich. In den Tieren mit Lyoplant® konnten wir die Ergebnisse von Meyer et al. bestätigen. Zusammenfassend ist zu sagen, dass die bipolaren Polymermembranen viele Eigenschaften eines idealen biokompatiblen Materials erfüllen, jedoch aufgrund der fehlenden mechanischen Stabilität nicht zur Therapie von kongenitalen Bauchwanddefekten geeignet sind. Lyoplant® hingegen erwies sich in Bezug auf fehlende Hernienbildung und Adhäsionen, Gefäßeinsprossung und Trans-plantatakzeptanz im Vergleich zu den Polymeren als äußerst gut geeignetes Material. Um das operative Ergebnis weiter zu perfektionieren, könnte die Besiedelung des Kollagen-Meshs mit Stammzellen experimentell getestet werden. Inwieweit Lyoplant® dann für die Therapie der kongenitalen Bauchwanddefekte geeignet ist, müssen weitere klinische Studien zeigen. / Background: Congenital defects of the abdominal wall propose a challenging problem for pediatric surgeons. Today because of improved clinical know-how and the possibility of early operative intervention, the survival rates are about 90-100%. However, the long-range outcome is limited by an intense cicatrization and a loss of function in the replaced tissue. One of the key reasons is the lack of appropriate material for wound closure, which guarantees a high mechanical stability and is accepted by the children’s immune system. Furthermore, it should be absorbable to prevent other operations. Methods: In cooperation with the Department of FMZ we fabricated different kinds of PEG-PLA-copolymers and implantated these in an abdominal wall defect rat model, in comparison a biocompatible collagen-mesh was used. After 3 weeks, the abdomen was reopened and checked for adhesions. Afterwards the initial implant and the neighboring host tissue were resected for histological and immunohistochemical examination. Results: There were no technical difficulties in implanting all the different materials. Neither the rats with the collagen-mesh nor the control group’s animals developed a hernia. Adhesions were found in the animals with PEG-PLA copolymers. There were no adhesions in rats with collagen-mesh. The PLA-copolymers did not show any signs of cell infiltration or neovascularization, whereas the collagen-mesh did. The light microscopic analysis of the PEG-PLA copolymers didn’t show any cell infiltration in H&E or Goldner’s stain. However, the collagen-mesh presented cell infiltration and neovascularization. Conclusion: In summary, PEG-Polymers have many properties of an ideal biocompatible material but do not possess the most important property, namely, sufficient mechanical stability. Again, the collagen-mesh successfully proved its suitability. In comparison to the PEG-Polymers, it convinced in the endpoints adhesion, abdominal hernia, transplant acceptance with neovascularization and cell infiltration.
2

Entwicklung von in-situ härtenden Polymer/Apatit-Kompositmaterialien

Berger, Stefan 23 July 2009 (has links) (PDF)
Für die Behandlung von Knochendefekten unterschiedlicher Defektgeometrien besteht ein zunehmender Bedarf an geeigneten in-situ aushärtbaren Knochenersatzmaterialien, die nach Auffüllung des Defektes formstabil, biokompatibel, mechanisch hinreichend belastbar und biodegradierbar sind. In der vorliegenden Arbeit wurden kompakte und poröse, in-situ härtende Polymer/Apatit-Kompositmaterialien auf Basis eines hydrolytisch degradierbaren Methacrylatmakromers und nanokristallinen Apatiten hergestellt. Die entwickelten Makromer/Apatit-Gemische sind bis zur vollständigen Polymerisation des Makromers von pastöser Konsistenz und können in variable Geometrien verarbeitet werden. Durch Variation der Gemischzusammensetzung können die Verarbeitungszeiten und mechanischen Eigenschaften der Komposite gezielt eingestellt werden. Die In-vitro-Kultivierungen von MC3T3-E1-Zellen auf den Kompositen zeigen, dass die Komposite nach geeigneten Nachbehandlungsschritten cytokompatibel und vielversprechende Materialien zur Auffüllung von Knochendefekten sind.
3

Entwicklung von in-situ härtenden Polymer/Apatit-Kompositmaterialien

Berger, Stefan 29 October 2007 (has links)
Für die Behandlung von Knochendefekten unterschiedlicher Defektgeometrien besteht ein zunehmender Bedarf an geeigneten in-situ aushärtbaren Knochenersatzmaterialien, die nach Auffüllung des Defektes formstabil, biokompatibel, mechanisch hinreichend belastbar und biodegradierbar sind. In der vorliegenden Arbeit wurden kompakte und poröse, in-situ härtende Polymer/Apatit-Kompositmaterialien auf Basis eines hydrolytisch degradierbaren Methacrylatmakromers und nanokristallinen Apatiten hergestellt. Die entwickelten Makromer/Apatit-Gemische sind bis zur vollständigen Polymerisation des Makromers von pastöser Konsistenz und können in variable Geometrien verarbeitet werden. Durch Variation der Gemischzusammensetzung können die Verarbeitungszeiten und mechanischen Eigenschaften der Komposite gezielt eingestellt werden. Die In-vitro-Kultivierungen von MC3T3-E1-Zellen auf den Kompositen zeigen, dass die Komposite nach geeigneten Nachbehandlungsschritten cytokompatibel und vielversprechende Materialien zur Auffüllung von Knochendefekten sind.
4

Encapsulation of particles and cells using stimuli-responsive self-rolling polymer films

Zakharchenko, Svetlana 26 May 2014 (has links) (PDF)
This thesis is focused on the design and development of an approach, allowing the fabrication of biocompatible/biodegradable self-rolled polymer tubes, which are sensitive to stimuli at physiological conditions, can be homogenously filled with cells and are able to self-assemble into a complex 3D construct with uniaxially aligned pores. These constructs are aimed to recreate the microstructure of tissues with structural anisotropy, such as of muscles and bones. The approach consists of two steps of self-assembly. As a first step, cells are adsorbed on the top of an unfolded bilayer; triggered rolling results in a parallel encapsulation of cells inside the tubes. As a second step, the formed self-rolled tubes with encapsulated cells can be assembled in a uniaxial tubular scaffold. Three polymer systems were designed and investigated in the present work in order to allow triggered folding of the bilayer. These systems allow either reversible or irreversible tube formation. The possibility to encapsulate microobjects inside self-rolled polymer tubes was demonstrated on the example of silica particles, yeast cells and mammalian cells. At conditions when bilayer film is unfolded, particles or cells were deposited from their aqueous dispersion on the top of bilayer. An appropriate change of conditions triggers folding of the bilayer and results in encapsulation of particles or cells inside the tubes. One way swelling of an active polymer allows irreversible encapsulation of cells in a way that tubes do not unroll and cells cannot escape. It was demonstrated that encapsulated cells can proliferate and divide inside the tubes for a long period of time. Since used polymers are optically transparent, encapsulated cells can be easily observed using optical and fluorescent microscopy. Reversible swelling of an active polymer provides the possibility to release encapsulated objects. It was demonstrated that in aqueous media microtubes possessing small amount of negatively charged groups on external walls self-assemble in the presence of oppositely charged microparticles that results in a formation of 3D constructs. In obtained aggregates tubes and therefore pores were well-aligned and the orientation degree was extremely high. Moreover, the approach allows the design of porous materials with complex architectures formed by tubes of different sorts. The assembly of cell-laden microtubes results in a formation of uniaxial tubular scaffold homogeneously filled with cells. The results presented in this work demonstrate that the proposed approach is of practical interest for biotechnological applications. Self-rolled tubes can be filled with cells during their folding providing the desired homogeneity of filling. Individual tubes of different diameters could be used to investigate cell behaviour in confinement in conditions of structural anisotropy as well as to mimic blood vessels. Due to their directionality tubes could be used to guide the growth of cells that is of interest for regeneration of neuronal tissue. Reversibly foldable films allow triggered capture and release of the cells that could be implemented for controlled cell delivery. In perspective, self-assembled 3D constructs with aligned pores could be used for bottom-up engineering of the scaffolds, mimicking such tissues as cortical bone and skeletal muscle, which are characterized by repeating longitudinal units. Such constructs can be also considered as a good alternative of traditional 2D flat cell culture.
5

Encapsulation of particles and cells using stimuli-responsive self-rolling polymer films

Zakharchenko, Svetlana 09 April 2014 (has links)
This thesis is focused on the design and development of an approach, allowing the fabrication of biocompatible/biodegradable self-rolled polymer tubes, which are sensitive to stimuli at physiological conditions, can be homogenously filled with cells and are able to self-assemble into a complex 3D construct with uniaxially aligned pores. These constructs are aimed to recreate the microstructure of tissues with structural anisotropy, such as of muscles and bones. The approach consists of two steps of self-assembly. As a first step, cells are adsorbed on the top of an unfolded bilayer; triggered rolling results in a parallel encapsulation of cells inside the tubes. As a second step, the formed self-rolled tubes with encapsulated cells can be assembled in a uniaxial tubular scaffold. Three polymer systems were designed and investigated in the present work in order to allow triggered folding of the bilayer. These systems allow either reversible or irreversible tube formation. The possibility to encapsulate microobjects inside self-rolled polymer tubes was demonstrated on the example of silica particles, yeast cells and mammalian cells. At conditions when bilayer film is unfolded, particles or cells were deposited from their aqueous dispersion on the top of bilayer. An appropriate change of conditions triggers folding of the bilayer and results in encapsulation of particles or cells inside the tubes. One way swelling of an active polymer allows irreversible encapsulation of cells in a way that tubes do not unroll and cells cannot escape. It was demonstrated that encapsulated cells can proliferate and divide inside the tubes for a long period of time. Since used polymers are optically transparent, encapsulated cells can be easily observed using optical and fluorescent microscopy. Reversible swelling of an active polymer provides the possibility to release encapsulated objects. It was demonstrated that in aqueous media microtubes possessing small amount of negatively charged groups on external walls self-assemble in the presence of oppositely charged microparticles that results in a formation of 3D constructs. In obtained aggregates tubes and therefore pores were well-aligned and the orientation degree was extremely high. Moreover, the approach allows the design of porous materials with complex architectures formed by tubes of different sorts. The assembly of cell-laden microtubes results in a formation of uniaxial tubular scaffold homogeneously filled with cells. The results presented in this work demonstrate that the proposed approach is of practical interest for biotechnological applications. Self-rolled tubes can be filled with cells during their folding providing the desired homogeneity of filling. Individual tubes of different diameters could be used to investigate cell behaviour in confinement in conditions of structural anisotropy as well as to mimic blood vessels. Due to their directionality tubes could be used to guide the growth of cells that is of interest for regeneration of neuronal tissue. Reversibly foldable films allow triggered capture and release of the cells that could be implemented for controlled cell delivery. In perspective, self-assembled 3D constructs with aligned pores could be used for bottom-up engineering of the scaffolds, mimicking such tissues as cortical bone and skeletal muscle, which are characterized by repeating longitudinal units. Such constructs can be also considered as a good alternative of traditional 2D flat cell culture.

Page generated in 0.0595 seconds