Spelling suggestions: "subject:"knochendefekt"" "subject:"knochendefekte""
1 |
Entwicklung von in-situ härtenden Polymer/Apatit-KompositmaterialienBerger, Stefan 23 July 2009 (has links) (PDF)
Für die Behandlung von Knochendefekten unterschiedlicher Defektgeometrien besteht ein zunehmender Bedarf an geeigneten in-situ aushärtbaren Knochenersatzmaterialien, die nach Auffüllung des Defektes formstabil, biokompatibel, mechanisch hinreichend belastbar und biodegradierbar sind. In der vorliegenden Arbeit wurden kompakte und poröse, in-situ härtende Polymer/Apatit-Kompositmaterialien auf Basis eines hydrolytisch degradierbaren Methacrylatmakromers und nanokristallinen Apatiten hergestellt. Die entwickelten Makromer/Apatit-Gemische sind bis zur vollständigen Polymerisation des Makromers von pastöser Konsistenz und können in variable Geometrien verarbeitet werden. Durch Variation der Gemischzusammensetzung können die Verarbeitungszeiten und mechanischen Eigenschaften der Komposite gezielt eingestellt werden. Die In-vitro-Kultivierungen von MC3T3-E1-Zellen auf den Kompositen zeigen, dass die Komposite nach geeigneten Nachbehandlungsschritten cytokompatibel und vielversprechende Materialien zur Auffüllung von Knochendefekten sind.
|
2 |
Entwicklung von in-situ härtenden Polymer/Apatit-KompositmaterialienBerger, Stefan 29 October 2007 (has links)
Für die Behandlung von Knochendefekten unterschiedlicher Defektgeometrien besteht ein zunehmender Bedarf an geeigneten in-situ aushärtbaren Knochenersatzmaterialien, die nach Auffüllung des Defektes formstabil, biokompatibel, mechanisch hinreichend belastbar und biodegradierbar sind. In der vorliegenden Arbeit wurden kompakte und poröse, in-situ härtende Polymer/Apatit-Kompositmaterialien auf Basis eines hydrolytisch degradierbaren Methacrylatmakromers und nanokristallinen Apatiten hergestellt. Die entwickelten Makromer/Apatit-Gemische sind bis zur vollständigen Polymerisation des Makromers von pastöser Konsistenz und können in variable Geometrien verarbeitet werden. Durch Variation der Gemischzusammensetzung können die Verarbeitungszeiten und mechanischen Eigenschaften der Komposite gezielt eingestellt werden. Die In-vitro-Kultivierungen von MC3T3-E1-Zellen auf den Kompositen zeigen, dass die Komposite nach geeigneten Nachbehandlungsschritten cytokompatibel und vielversprechende Materialien zur Auffüllung von Knochendefekten sind.
|
3 |
Die Rekonstruktion von Knorpel- und KnochendefektenPerka, Carsten 17 October 2000 (has links)
Strategien zur Gewebsreparatur durch Zelltransplantate erfordern die Verfügbarkeit einer ausreichenden Menge von Zellen, die Schaffung konduktiver Mikrokulturbedingungen für die Integration und die Entwicklung des Implantats und die Entwicklung reproduzierbarer chirurgischer Technik für die klinische Anwendung des kultivierten Transplantats. In der vorliegenden Arbeit wurden mehrere Techniken der Zelltransplantation entwickelt und tierexperimentell erprobt. Unter Verwendung von Alginat wurde eine neue sequentielle Zellkulturtechnik für Knorpeltransplantate entwickelt. Der optimale Kompromiß zwischen der Matrixstabilisierung und einer ausreichenden Diffusionskapazität für die Zellfunktion wurde bei einer Mischung aus 0,6 % Alginat und 4,5 % Fibrin gefunden. Weitere untersuchte Matrixstrukturen zur Transplantation von Chondrozyten, wie die bioresorbierbaren Polymere, das Kollagen-Fibrin-Gel besitzen gegenüber der gegenwärtig kommerziell genutzten Methode hinsichtlich des chirurgischen Prozederes bei vergleichbaren histologischen Ergebnissen Vorteile. Die histomorphologischen Veränderungen und die Entwicklung des Transplantats in vivo werden durch die spezifischen Bedingungen der Transplantatumgebung beeinflußt. Dabei ist ein vollständiges zonales und sequentielles Remodeling von Knorpel-Knochendefekten nur bei nicht ausdifferenzierten Zellen (embryonale Chondrozyten, periostale Zellen) zu erkennen, da diese Zellen ein exzellentes chondrogenes und osteogenes Potential besitzen. Transplantate unter Verwendung von Chondrozyten zeigen dagegen nur eine sehr geringe Rekonstruktion des subchondralen Knochens. Periostale Zellen sind in vitro ohne Verlust des Phänotyps amplifizierbar und stellen daher eine optimale Zellquelle für das Tissue Engineering dar. Für das Bone Engineering ist die Kombination der osteokonduktiven Eigenschaften unterschiedlicher Trägermaterialien mit Zellen, die ein osteogenes Potential besitzen ein neuer Weg zur Optimierung des Prozesses der knöchernen Rekonstruktion, wie in Versuchen zur Rekonstruktion segementaler Ulnadefekte bei Kaninchen gezeigt werden konnte. Die Herstellung eines präossären stabilen aber formbaren Transplantats mit vielfältigen klinischen Einsatzmöglichkeiten ist unter Verwendung von biodegradierbaren Polymeren und von Fibrinbeads realisierbar. Der Einsatz von Wachstumsfaktoren, wie TGF-?1 und die zunehmenden Erkenntnisse zu den Zell-Zell- und Zell-Matrix-Interaktionen ermöglichen die verbesserte Generation ortsständigen Gewebes durch multipotente Zellen. Die immer komplexere und umfassendere Wiederholung der sich in der Ontogenese abspielenden Vorgänge durch die Techniken des Tissue Engineering, ermöglicht die Schaffung therapeutischer Optionen zur Behandlung von Knochen- und Knorpeldefekten, wo bisher keine existierten oder nur unzulänglich vorhanden waren. / Strategies for tissue repair by cell transplants require the availability of a sufficient amount of cells, the creation of conductive microculture conditions for the integration and development of the implant and the development of reproducible surgical techniques for the clinical application of the cultivated transplant. Within the frame of the present work, several techniques of cell transplantation were developed and tested by way of experiment. By using alginate, a new sequential cell culture technique was developed for cartilage transplants. The optimum compromise between the matrix stabilization and a sufficient diffusion capacity for the cell function was found with a mixture of 0.6 % of alginate and 4.5 % of fibrin. Further investigated matrix structures for the transplantation of chondrocytes, such as the bio-absorbable polymers, the collagen fibrin jelly show advantages compared with the method commercially applied at present regarding the surgical procedure with the gained histological results being comparable. The histomorphological changes and the development of the transplant within the living body are influenced by the specific conditions of the transplant environment. In this connection, a complete zonal and sequential remodeling of osteochondrodefects can only be detected for non-outdifferentiated cells (embryonic chondrocytes, periosteal cells) as these cells have an excellent chondrogenic and osteogenic potential. When using chondrocytes for transplants, however, the transplant only shows a very little restoration of the subchondral bone. Periosteal cells can be amplified in the living body without losing the phenotype, thus constituting an optimum cell source for tissue engineering. For the bone engineering, the combination of the osteoconductive properties of different carrier materials with cells having an osteogenic potential is a new way for optimizing the process of bone restoration as it was demonstrated in tests for the restoration of segmental ulnar defects occurring with rabbits. The generation of a preosteal stable, but mouldable transplant with manifold clinical possibilities of utilization can be realized by using biodegradable polymers and fibrin beads. The use of growth factors, such as TGF-?1, and the increasing knowledge of cell-cell and cell-matrix interactions enable the improved generation of stationary tissue by multipotent cells. The more and more complex and comprehensive repetition of processes going on in the ontogenesis by way of tissue engineering enables the creation of therapeutic options for the treatment of osteochondrodefects where hitherto none existed or just in a too small number.
|
4 |
Etablierung eines kritischen Knochendefektmodells an der immundefizienten Maus / Establishment of a femoral critical-size bone defect model in immunodeficient miceNiederlohmann, Eik 17 May 2014 (has links) (PDF)
Die Entwicklung innovativer Therapiekonzepte für die Knochenregeneration erfordert validierte segmentale Knochendefekt-Tiermodelle. Dabei ist das Mausmodell für die präklinische Testung von zentraler Bedeutung, jedoch fehlen in der wissenschaftlichen Literatur bislang Angaben zu validierten, extern stabilisierenden kritischen segmentalen Knochendefektmodellen an der immundefizienten Maus. Das Ziel dieser Arbeit war daher die Entwicklung und in vivo Evaluierung eines zuverlässigen und einfach zu handhabenden Modells für extern stabilisierte kritische Knochendefekte an der immundefizienten Maus.
Dreißig männliche nu/nu-Mäuse (40,7±2,8 g, 95±2,6 d) wurden mittels Isofluraninhalation narkotisiert und anschließend ein externer Fixateur (MouseExFix, RISystem, AO Research Institute Davos, Schweiz) am rechten Femur angebracht. Femorale Knochendefekte der Länge 1 mm (n=10), 2 mm (n=10) und 3 mm (n=10) wurden erzeugt. Der Wundverschluss erfolgte mit Einzelknopfnähten. Röntgenaufnahmen wurden unmittelbar postoperativ und im Folgenden alle zwei Wochen innerhalb des Beobachtungszeitraums von zwölf Wochen angefertigt und im Hinblick auf Knochenregeneration und –fusion ausgewertet. Weiterhin wurden histomorphologische, histomorphometrische, immunhistochemische und µCT-Analysen zur dreidimensionalen und zellulären Beurteilung der Knochenheilung angefertigt.
Alle Tiere überlebten die Operation. Sechs Tiere starben innerhalb des Beobachtungszeitraums als Folge von starkem Blutverlust (n=1), Infektion (n=1), Pinlockerung, welche die Euthanasie erforderlich machte (n=2) und durch Komplikationen bei der Anästhesie (n=2). Die µCT-Analyse nach zwölf Wochen zeigte, dass 3/8 der 1 mm-Defekte, 5/8 der 2 mm-Defekte und 8/8 der 3 mm-Defekte eine Pseudarthrose aufwiesen. Das mittlere Defektvolumen stieg signifikant (p<0,001) mit der Größe des Defektes und betrug 0,36±0,42 mm³ (1 mm-Gruppe), 1,4±0,88 mm³ (2 mm-Gruppe), bzw. 2,88±0,28 mm³ (3 mm-Gruppe). Die mittlere Defektgröße verringerte sich entsprechend um 77,6% (1 mm-Gruppe), 56,8% (2 mm-Gruppe), bzw. 28,6% (3 mm-Gruppe). Die histomorphologischen, histomorphometrischen und immunhistochemischen Analysen zeigten keine statistisch signifikanten Unterschiede zwischen den drei experimentellen Gruppen.
Das verwendete MouseExFix-System ist ein zuverlässiges und einfach zu handhabendes Verfahren zur Stabilisierung eines kritischen segmentalen Knochendefekts an der immundefizienten Maus, wenn ein 3 mm-Defekt erzeugt wird. Das im Rahmen der Studie entwickelte und validierte murine extern stabilisierte, segmentale kritische Knochendefektmodell ermöglicht die präklinische Evaluierung von Konzepten zur lokalen Knochenregeneration inklusive der Verwendung allo- und xenogener Zellen. / The development of innovative therapies for bone regeneration requires the use of advanced site-specific bone defect small animal models. In this context, murine models are of major importance as they allow for sufficient sample sizes prior to preclinical testing using larger animals. Owing to the small dimensions of the murine femur only a few custom fabricated fixation devices have been described in the literature so far. The aim of this investigation was to develop and validate a new, externally fixated critical size bone defect model for immunodeficient mice.
Thirty male nu/nu mice (40.7 ± 2.8 g, 95 ± 2.6 days old) were anesthetized by isoflurane inhalation and an external fixation device (MouseExFix, RISystem, AO Research Institute Davos, Switzerland) was attached to the right femur. Femoral bone defects of 1 mm (n=10), 2 mm (n=10) and 3 mm (n=10) were created. Wounds were closed without any additional treatment. X-ray films obtained immediately after surgery and every 2 weeks postoperatively during the 12 week postoperative observation period were evaluated for bony regeneration and fusion. Furthermore, histomorphology, histomorphometry, immunohistochemistry and µCT analysis were performed.
All of the animals survived the operation. Twenty four out of 30 animals reached the twelfth postoperative week. µCT analyses after twelve weeks showed that 3/8 of the 1 mm defects, 5/8 of the 2 mm defects and 8/8 of the 3 mm defects remained as nonunions. The defect volume was 0.36 ± 0.42 mm³ (1 mm group), 1.40 ± 0.88 mm³ (2 mm group), and 2.88 ± 0.28 mm³ (3 mm group) (p<0.001, between all groups). The defect size decreased by 77.6% (1-mm group), 56.8% (2-mm group) and 28.6% (3-mm group) (p=0.152, between all groups).
Our method using the MouseExFix device has proven to be a reliable and easy-to-handle external fixation system for the stabilization of critical-size segmental bone defects in immundeficient mice when 3 mm defects are generated. This mouse model allows for high-throughput translational evaluation of concepts for site-specific bone regeneration including strategies using allogenic and xenogenic cell types.
|
5 |
Retrospektive Untersuchung der digital bestimmten relativen Knochendichte nach Defektauffüllungen im Mund- Kiefer-Gesichtsbereich mittels phasenreinen Hydroxyl-apatits unter Berücksichtigung der klinischen Verläufe / Retrospective investigation of the digitally determined relative bone density after defect filling in the oral-maxillo-facial region with a phase-pure hydroxyapatite taking into account the clinical coursesGeiger, Manuel 18 February 2020 (has links)
No description available.
|
6 |
Etablierung eines kritischen Knochendefektmodells an der immundefizienten MausNiederlohmann, Eik 29 April 2014 (has links)
Die Entwicklung innovativer Therapiekonzepte für die Knochenregeneration erfordert validierte segmentale Knochendefekt-Tiermodelle. Dabei ist das Mausmodell für die präklinische Testung von zentraler Bedeutung, jedoch fehlen in der wissenschaftlichen Literatur bislang Angaben zu validierten, extern stabilisierenden kritischen segmentalen Knochendefektmodellen an der immundefizienten Maus. Das Ziel dieser Arbeit war daher die Entwicklung und in vivo Evaluierung eines zuverlässigen und einfach zu handhabenden Modells für extern stabilisierte kritische Knochendefekte an der immundefizienten Maus.
Dreißig männliche nu/nu-Mäuse (40,7±2,8 g, 95±2,6 d) wurden mittels Isofluraninhalation narkotisiert und anschließend ein externer Fixateur (MouseExFix, RISystem, AO Research Institute Davos, Schweiz) am rechten Femur angebracht. Femorale Knochendefekte der Länge 1 mm (n=10), 2 mm (n=10) und 3 mm (n=10) wurden erzeugt. Der Wundverschluss erfolgte mit Einzelknopfnähten. Röntgenaufnahmen wurden unmittelbar postoperativ und im Folgenden alle zwei Wochen innerhalb des Beobachtungszeitraums von zwölf Wochen angefertigt und im Hinblick auf Knochenregeneration und –fusion ausgewertet. Weiterhin wurden histomorphologische, histomorphometrische, immunhistochemische und µCT-Analysen zur dreidimensionalen und zellulären Beurteilung der Knochenheilung angefertigt.
Alle Tiere überlebten die Operation. Sechs Tiere starben innerhalb des Beobachtungszeitraums als Folge von starkem Blutverlust (n=1), Infektion (n=1), Pinlockerung, welche die Euthanasie erforderlich machte (n=2) und durch Komplikationen bei der Anästhesie (n=2). Die µCT-Analyse nach zwölf Wochen zeigte, dass 3/8 der 1 mm-Defekte, 5/8 der 2 mm-Defekte und 8/8 der 3 mm-Defekte eine Pseudarthrose aufwiesen. Das mittlere Defektvolumen stieg signifikant (p<0,001) mit der Größe des Defektes und betrug 0,36±0,42 mm³ (1 mm-Gruppe), 1,4±0,88 mm³ (2 mm-Gruppe), bzw. 2,88±0,28 mm³ (3 mm-Gruppe). Die mittlere Defektgröße verringerte sich entsprechend um 77,6% (1 mm-Gruppe), 56,8% (2 mm-Gruppe), bzw. 28,6% (3 mm-Gruppe). Die histomorphologischen, histomorphometrischen und immunhistochemischen Analysen zeigten keine statistisch signifikanten Unterschiede zwischen den drei experimentellen Gruppen.
Das verwendete MouseExFix-System ist ein zuverlässiges und einfach zu handhabendes Verfahren zur Stabilisierung eines kritischen segmentalen Knochendefekts an der immundefizienten Maus, wenn ein 3 mm-Defekt erzeugt wird. Das im Rahmen der Studie entwickelte und validierte murine extern stabilisierte, segmentale kritische Knochendefektmodell ermöglicht die präklinische Evaluierung von Konzepten zur lokalen Knochenregeneration inklusive der Verwendung allo- und xenogener Zellen.:1 Einleitung 1
1.1 Hintergrund 1
1.2 Das Mausmodell 2
1.3 Übersicht Tierversuche mit Knochendefekten 5
1.4 Frakturheilung 6
1.4.1 Allgemeines 6
1.4.2 Räumliche Gliederung 7
1.4.3 Expression von Proteinen der extrazellulären Matrix 8
1.4.4 Das Vier-Phasen-Modell der Frakturheilung 9
1.4.5 Das anabolisch/ katabolische Modell der Frakturheilung 12
1.4.6 Beeinflussung der Frakturheilung 12
1.4.7 Das Diamantkonzept 14
1.5 Osteosynthesesysteme 14
1.6 Pseudarthrosen 15
1.6.1 Definition 15
1.6.2 Ätiologie 16
1.6.3 Klassifikation 16
1.6.4 Therapie 17
2 Material und Methoden 19
2.1 Versuchstiere 19
2.2 Operationsvorbereitung 19
2.3 Operationsablauf 20
2.4 Postoperatives Vorgehen 27
2.5 Verlaufskontrolle 28
2.6 Entnahme der Präparate 29
2.7 Anfertigung der µCT-Aufnahmen 30
2.8 Anfertigung der histologischen Schnitte 30
2.8.1 Bearbeitung der Femora 30
2.8.2 verwendete Färbungen 31
2.9 Beurteilung der Schnitte 32
2.9.1 Histologische Beurteilung 32
2.9.2 Histomorphometrische Beurteilung 33
2.10 Statistik 33
3 Ergebnisse 34
3.1 Überlebensraten und Gewichtsverlauf 34
3.2 Röntgenauswertung 35
3.3 CT-Auswertung 38
3.4 Histologische Auswertung 41
3.5 Histomorphometrische Auswertung 44
3.5.1 TRAP 44
3.5.2 Osteocalcin 46
3.5.3 Osteopontin 47
3.5.4 Osteonectin 48
4 Diskussion 50
4.1 Diskussion etablierter Modelle für kritische Knochendefekte 50
4.1.1 Diskussion der Konzeption der Modelle 50
4.1.2 Diskussion der durchgeführten Anästhesieverfahren 54
4.1.3 Diskussion der Ergebnisse 55
4.1.4 Diskussion der Defektlängen 56
4.1.5 Diskussion der verschiedenen Osteosynthesesysteme 57
4.1.6 Diskussion der Ausfaller 59
4.2 Anwendung und Nutzen immundefizienter Tiermodelle 60
4.3 Vergleich des tibialen und des femoralen murinen Frakturmodells 63
4.4 Diskussion der Beurteilung der Knochenheilung mittels bildgebender und histologischer Verfahren 63
4.5 Anwendungsmöglichkeiten 65
4.6 Schlussfolgerungen 66
5 Zusammenfassung 67
5.1 In deutscher Sprache 67
5.2 In englischer Sprache 68
6 Literaturverzeichnis 70
7 Anhang 92
7.1 Danksagung 92
7.2 Lebenslauf 93
7.3 Veröffentlichungen 95
7.4 Wertetabellen 96
7.5 Erklärungen zur Eröffnung des Promotionsverfahrens 109 / The development of innovative therapies for bone regeneration requires the use of advanced site-specific bone defect small animal models. In this context, murine models are of major importance as they allow for sufficient sample sizes prior to preclinical testing using larger animals. Owing to the small dimensions of the murine femur only a few custom fabricated fixation devices have been described in the literature so far. The aim of this investigation was to develop and validate a new, externally fixated critical size bone defect model for immunodeficient mice.
Thirty male nu/nu mice (40.7 ± 2.8 g, 95 ± 2.6 days old) were anesthetized by isoflurane inhalation and an external fixation device (MouseExFix, RISystem, AO Research Institute Davos, Switzerland) was attached to the right femur. Femoral bone defects of 1 mm (n=10), 2 mm (n=10) and 3 mm (n=10) were created. Wounds were closed without any additional treatment. X-ray films obtained immediately after surgery and every 2 weeks postoperatively during the 12 week postoperative observation period were evaluated for bony regeneration and fusion. Furthermore, histomorphology, histomorphometry, immunohistochemistry and µCT analysis were performed.
All of the animals survived the operation. Twenty four out of 30 animals reached the twelfth postoperative week. µCT analyses after twelve weeks showed that 3/8 of the 1 mm defects, 5/8 of the 2 mm defects and 8/8 of the 3 mm defects remained as nonunions. The defect volume was 0.36 ± 0.42 mm³ (1 mm group), 1.40 ± 0.88 mm³ (2 mm group), and 2.88 ± 0.28 mm³ (3 mm group) (p<0.001, between all groups). The defect size decreased by 77.6% (1-mm group), 56.8% (2-mm group) and 28.6% (3-mm group) (p=0.152, between all groups).
Our method using the MouseExFix device has proven to be a reliable and easy-to-handle external fixation system for the stabilization of critical-size segmental bone defects in immundeficient mice when 3 mm defects are generated. This mouse model allows for high-throughput translational evaluation of concepts for site-specific bone regeneration including strategies using allogenic and xenogenic cell types.:1 Einleitung 1
1.1 Hintergrund 1
1.2 Das Mausmodell 2
1.3 Übersicht Tierversuche mit Knochendefekten 5
1.4 Frakturheilung 6
1.4.1 Allgemeines 6
1.4.2 Räumliche Gliederung 7
1.4.3 Expression von Proteinen der extrazellulären Matrix 8
1.4.4 Das Vier-Phasen-Modell der Frakturheilung 9
1.4.5 Das anabolisch/ katabolische Modell der Frakturheilung 12
1.4.6 Beeinflussung der Frakturheilung 12
1.4.7 Das Diamantkonzept 14
1.5 Osteosynthesesysteme 14
1.6 Pseudarthrosen 15
1.6.1 Definition 15
1.6.2 Ätiologie 16
1.6.3 Klassifikation 16
1.6.4 Therapie 17
2 Material und Methoden 19
2.1 Versuchstiere 19
2.2 Operationsvorbereitung 19
2.3 Operationsablauf 20
2.4 Postoperatives Vorgehen 27
2.5 Verlaufskontrolle 28
2.6 Entnahme der Präparate 29
2.7 Anfertigung der µCT-Aufnahmen 30
2.8 Anfertigung der histologischen Schnitte 30
2.8.1 Bearbeitung der Femora 30
2.8.2 verwendete Färbungen 31
2.9 Beurteilung der Schnitte 32
2.9.1 Histologische Beurteilung 32
2.9.2 Histomorphometrische Beurteilung 33
2.10 Statistik 33
3 Ergebnisse 34
3.1 Überlebensraten und Gewichtsverlauf 34
3.2 Röntgenauswertung 35
3.3 CT-Auswertung 38
3.4 Histologische Auswertung 41
3.5 Histomorphometrische Auswertung 44
3.5.1 TRAP 44
3.5.2 Osteocalcin 46
3.5.3 Osteopontin 47
3.5.4 Osteonectin 48
4 Diskussion 50
4.1 Diskussion etablierter Modelle für kritische Knochendefekte 50
4.1.1 Diskussion der Konzeption der Modelle 50
4.1.2 Diskussion der durchgeführten Anästhesieverfahren 54
4.1.3 Diskussion der Ergebnisse 55
4.1.4 Diskussion der Defektlängen 56
4.1.5 Diskussion der verschiedenen Osteosynthesesysteme 57
4.1.6 Diskussion der Ausfaller 59
4.2 Anwendung und Nutzen immundefizienter Tiermodelle 60
4.3 Vergleich des tibialen und des femoralen murinen Frakturmodells 63
4.4 Diskussion der Beurteilung der Knochenheilung mittels bildgebender und histologischer Verfahren 63
4.5 Anwendungsmöglichkeiten 65
4.6 Schlussfolgerungen 66
5 Zusammenfassung 67
5.1 In deutscher Sprache 67
5.2 In englischer Sprache 68
6 Literaturverzeichnis 70
7 Anhang 92
7.1 Danksagung 92
7.2 Lebenslauf 93
7.3 Veröffentlichungen 95
7.4 Wertetabellen 96
7.5 Erklärungen zur Eröffnung des Promotionsverfahrens 109
|
Page generated in 0.0622 seconds