• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Beiträge zur additiven Herstellung biokompatibler flexibler und dehnbarer Elektronik

Schubert, Martin 13 April 2021 (has links)
Die Etablierung der Telemedizin stellt neue Herausforderungen an die Aufbau- und Verbindungstechnik der Elektronik. Neue medizintechnische Anwendungen für die breite Gesellschaft erfordern biokompatible, flexible und dehnbare Elektronik, die zugleich kostengünstig und individuell hergestellt werden kann. Einen vielversprechenden Ansatz bietet die Verwendung additiver Herstellungsverfahren. Gegenstand dieser Arbeit ist die Materialauswahl für flexible und dehnbare Mikrosysteme vor dem Hintergrund der Anforderungen für zukünftige biomedizinische Anwendungen und unter Verwendung ausschließlich additiver Verfahren. Der grundlegende Aufbau gedruckter Elektronik, bestehend aus Leiterzügen verschiedener Nanopartikeltinten und polymeren Substraten, wird hinsichtlich biologischer und mechanischer Eigenschaften untersucht. Diese Charakterisierung beinhaltet die Evaluation der Zytotoxizität, Haftfestigkeit, Biegebelastung und Dehnungsbelastung der Materialkombinationen. Im Fokus steht der Inkjetdruck von Platintinte auf flexiblen Polyimid- und dehnbaren Polyurethansubstraten. Aufgrund der Inkompatibilität zwischen der erforderlichen Sintertemperatur der Platintinte und der Erweichungstemperatur des Polyurethans, wird das photonische Sintern untersucht. Dafür kommen Lasersintern und Blitzlampensintern zum Einsatz. Die Platintinte zeigt ausgezeichnete Eigenschaften im Zytotoxizitätstest durch 98 %ige Zellvitalität im Vergleich zur biokompatiblen Referenz. Die bestimmten Haftfestigkeiten liegen zwischen 0,5N/mm2 und 2,5N/mm2 und entsprechen damit aktuellen Literaturwerten. Weiterhin zeigt das Ergebnis von Biegetests vielversprechende flexible Eigenschaften. Der Widerstand nach 180 000 Biegezyklen erhöht sich bei einem Biegeradius von 5mm um maximal 9,5% und bei 2mm um maximal 42 %. Die Dehnungstests mit Horseshoestrukturen aus Silbertinte zeigen ca. 400 Dehnungszyklen bei 10% Dehnung und ca. 400 Zyklen bei 20% Dehnung bis zur vollständiger Leiterzugunterbrechung. Zwei Demonstratoren validieren das Potential der ausschließlichen Nutzung von additiven Prozessen zur Herstellung biomedizinischer Mikrosysteme. Der erste Demonstrator ist eine Hautelektrode, welche sich durch temporären Elektroden-Hautkontakt zur Hautleitwertmessung eignet. Der zweite Demonstrator beinhaltet eine miniaturisierte, gedruckte Interdigitalelektrode, die durch die Anwendung von Nanosekundenimpulsen in der Lage ist, Zellen zu manipulieren. Die Erkenntnisse aus dieser Arbeit zeigen das große Potential der Nutzung additiver Prozesse für die Herstellung von Medizinprodukten.
Read more
2

Photo-crosslinked Surface Attached Thin Hydrogel Layers

Pareek, Pradeep 06 April 2005 (has links) (PDF)
Stimuli sensitive polymers and hydrogels respond with large property changes to small physical and chemical stimuli (e.g. temperature, pH, ionic strength). The bulk behavior of these polymers is widely studied and they show an isotropic swelling. However, thin hydrogel layers of polymers on a substrate show a swelling behavior, which is constrained in some way. Therefore, size, confinement, patternability, response time and transition temperature of thin hydrogel layers are the most important parameters in technological applications and this study focuses on the investigation of these above-mentioned parameters. The aim of this study involves synthesis, characterization and application of thin photo-crosslinked hydrogel layers. Dimethylmaleimide (DMI) moiety was incorporated in the polymers chains and was used to introduce photo-crosslinking by [2+2] cyclodimerization reaction in the presence of UV irradiation. The following photo-crosslinkers based on DMI group were synthesized ? - Acrylate photo-crosslinker (DMIAm) - Acrylamide photo-crosslinker (DMIAAm) - Polyol photo-crosslinker (DMIPA, DMIPACl) The conventional free radical polymerization of above listed photo-crosslinker with its respective monomer resulted in formation of photo-crosslinkable polymers of (a) HEMA, (b) DMAAm, (c) NIPAAm/DMAAm, (d) NIPAAm/Cyclam. The properties of these polymers were investigated by NMR, UV-VIS spectroscopy, GPC and SPR. Thin hydrogel layers were prepared by spin coating on gold-coated LaSFN9 glass. The covalent attachment to the surface was achieved through an adhesion promoter. Swelling behavior of the thin polymer layers was thoroughly investigated by Surface Plasmon Resonance (SPR) Spectroscopy and Optical Waveguide Spectroscopy (OWS). SPR and OWS gave a wide range of information regarding the film thickness, swelling ratio, refractive index, and volume degree of swelling of the thin hydrogel layer. For hydrophilic photo-crosslinked hydrogel layers of HEMA and DMAAm, it was observed that the volume degree of swelling was independent of temperature changes but was dependent on the photo-crosslinker mol-% in the polymer. These surface attached thin hydrogel layer exhibited an anisotropic swelling. For NIPAAm photo-crosslinked hydrogel layers with DMAAm as a hydrophilic monomer, it was observed that both transition temperature (Tc) and volume degree of swelling increases with increase in the mol-% of DMAAm. To study the effect of film thickness on Tc and volume degree of swelling, hydrogels with wide range of film thickness were prepared and investigated by SPR. These results provided vital information on the swelling behavior of surface attached hydrogel layer and showed the versatility of SPR instrument for studying thin hydrogel layers. Later part of project involved synthesis of multilayer hydrogel assembly involving a thermoresponsive polymer and a hydrophilic polymer. The combination of two layers with photo-crosslinkable DMAAm polymer as base layer and photo-crosslinkable NIPAAm polymer as top layer formulate a multilayer assembly where, the base layer only swells in response to temperature and the top layer shows temperature dependent swelling. Photo-crosslinked hydrogel layers of NIPAAm, DMAAm and HEMA shows a high-resolution patterns when irradiated by UV light through a chromium mask. At last this study focused on an important application of these hydrogel layers for cell attachment processes. Cell growth, proliferation and spreading shows a biocompatible nature of these hydrogel surfaces. Such thermoresponsive photo-crosslinkable multilayer structure forms bases for future projects involving their use in actuator material and cell-attachment processes.
Read more
3

Photo-crosslinked Surface Attached Thin Hydrogel Layers

Pareek, Pradeep 05 April 2005 (has links)
Stimuli sensitive polymers and hydrogels respond with large property changes to small physical and chemical stimuli (e.g. temperature, pH, ionic strength). The bulk behavior of these polymers is widely studied and they show an isotropic swelling. However, thin hydrogel layers of polymers on a substrate show a swelling behavior, which is constrained in some way. Therefore, size, confinement, patternability, response time and transition temperature of thin hydrogel layers are the most important parameters in technological applications and this study focuses on the investigation of these above-mentioned parameters. The aim of this study involves synthesis, characterization and application of thin photo-crosslinked hydrogel layers. Dimethylmaleimide (DMI) moiety was incorporated in the polymers chains and was used to introduce photo-crosslinking by [2+2] cyclodimerization reaction in the presence of UV irradiation. The following photo-crosslinkers based on DMI group were synthesized ? - Acrylate photo-crosslinker (DMIAm) - Acrylamide photo-crosslinker (DMIAAm) - Polyol photo-crosslinker (DMIPA, DMIPACl) The conventional free radical polymerization of above listed photo-crosslinker with its respective monomer resulted in formation of photo-crosslinkable polymers of (a) HEMA, (b) DMAAm, (c) NIPAAm/DMAAm, (d) NIPAAm/Cyclam. The properties of these polymers were investigated by NMR, UV-VIS spectroscopy, GPC and SPR. Thin hydrogel layers were prepared by spin coating on gold-coated LaSFN9 glass. The covalent attachment to the surface was achieved through an adhesion promoter. Swelling behavior of the thin polymer layers was thoroughly investigated by Surface Plasmon Resonance (SPR) Spectroscopy and Optical Waveguide Spectroscopy (OWS). SPR and OWS gave a wide range of information regarding the film thickness, swelling ratio, refractive index, and volume degree of swelling of the thin hydrogel layer. For hydrophilic photo-crosslinked hydrogel layers of HEMA and DMAAm, it was observed that the volume degree of swelling was independent of temperature changes but was dependent on the photo-crosslinker mol-% in the polymer. These surface attached thin hydrogel layer exhibited an anisotropic swelling. For NIPAAm photo-crosslinked hydrogel layers with DMAAm as a hydrophilic monomer, it was observed that both transition temperature (Tc) and volume degree of swelling increases with increase in the mol-% of DMAAm. To study the effect of film thickness on Tc and volume degree of swelling, hydrogels with wide range of film thickness were prepared and investigated by SPR. These results provided vital information on the swelling behavior of surface attached hydrogel layer and showed the versatility of SPR instrument for studying thin hydrogel layers. Later part of project involved synthesis of multilayer hydrogel assembly involving a thermoresponsive polymer and a hydrophilic polymer. The combination of two layers with photo-crosslinkable DMAAm polymer as base layer and photo-crosslinkable NIPAAm polymer as top layer formulate a multilayer assembly where, the base layer only swells in response to temperature and the top layer shows temperature dependent swelling. Photo-crosslinked hydrogel layers of NIPAAm, DMAAm and HEMA shows a high-resolution patterns when irradiated by UV light through a chromium mask. At last this study focused on an important application of these hydrogel layers for cell attachment processes. Cell growth, proliferation and spreading shows a biocompatible nature of these hydrogel surfaces. Such thermoresponsive photo-crosslinkable multilayer structure forms bases for future projects involving their use in actuator material and cell-attachment processes.
Read more
4

Label-free multiphoton microscopy reveals relevant tissue changes induced by alginate hydrogel implantation in rat spinal cord injury

Galli, Roberta, Sitoci-Ficici, Kerim H., Uckermann, Ortrud, Later, Robert, Marečková, Magda, Koch, Maria, Leipnitz, Elke, Schackert, Gabriele, Koch, Edmund, Gelinsky, Michael, Steiner, Gerald, Kirsch, Matthias 24 April 2019 (has links)
The development of therapies promoting recovery after spinal cord injury is a challenge. Alginate hydrogels offer the possibility to develop biocompatible implants with mechanical properties tailored to the nervous tissue, which could provide a permissive environment for tissue repair. Here, the effects of non-functionalized soft calcium alginate hydrogel were investigated in a rat model of thoracic spinal cord hemisection and compared to lesioned untreated controls. Open field locomotion tests were employed to evaluate functional recovery. Tissue analysis was performed with label-free multiphoton microscopy using a multimodal approach that combines coherent anti-Stokes Raman scattering to visualize axonal structures, two-photon fluorescence to visualize inflammation, second harmonic generation to visualize collagenous scarring. Treated animals recovered hindlimb function significantly better than controls. Multiphoton microscopy revealed that the implant influenced the injury-induced tissue response, leading to decreased inflammation, reduced scarring with different morphology and increased presence of axons. Demyelination of contralateral white matter near the lesion was prevented. Reduced chronic inflammation and increased amount of axons in the lesion correlated with improved hindlimb functions, being thus relevant for locomotion recovery. In conclusion, non-functionalized hydrogel improved functional outcome after spinal cord injury in rats. Furthermore, label-free multiphoton microscopy qualified as suitable technique for regeneration studies.
Read more
5

Evaluation of dispensed carbon nanotube ink on flexible substrates for biocompatible application

Schubert, Martin, Berg, Hendrik, Friedrich, Sabine, Bock, Karlheinz 11 February 2019 (has links)
For biomedical electronics the compatibility to the biological environment should be well-considered. Therefore this paper evaluates dispensed carbon nanotubes (CNT's) on polyimide (PI) foil for conductive tracks and electrodes for flexible, biomedical applications. A CNT based ink is investigated regarding biocompatibility, flexibility, conductivity and suitability for electrode materials with contact to artificial body fluids. The testing methods comprise bending tests with resistance monitoring, adhesion tests and the utilization of dynamic fluidic and electrical load on dispensed structures. The CNT ink showed good bending properties up to 2653 cycles with an average sheet resistance of 32.5 Ohm/sq. A demonstration of biocompatibility using the adherent cell line HFFF2 resulted negatively. No delamination or dissolving effects occurred during exposure to 0.9 % sodium chloride solution.

Page generated in 0.0418 seconds