Spelling suggestions: "subject:"biomarkers""
361 |
Proteomic Analysis of Peroxisomal ProteinsMi, Jia January 2007 (has links)
Peroxisome is a ubiquitous eukaryotic organelle with a single-layer membrane. It maintains various functions that differ depending on the species and cell types, as well as the environmental or developmental conditions. In the first part of this thesis, the peroxisomal protein content was systematically analyzed in different organs in mouse from different ages using proteomic approaches. Thirty-one peroxisomal proteins were identified and ten putative peroxisomal proteins were suggested. The results indicate that peroxisomal proteins show a tissue-specific functional response to the aging process that is probably dependent on their differential regeneration capacity. Besides, alteration in the fatty acid metabolism could alter membrane protein functions; decrease in catalase expression in kidney may contribute to oxidative stress and isoprenoid biosynthesis could contribute to decline in bile salt synthesis. The ability to detect changes in the peroxisomal proteome associated with organ impairment during the course of aging would provide a conceptual framework to understand the role of peroxisome in aging. In the second part, peroxisome proteomics was used as a novel approach in marine pollution assessment. The peroxisomal protein expression profiles were obtained and identified from mussel Mytilus sp. exposed to different pollutants, in both laboratory and field experiments. The identified proteins were involved in α- and β–oxidation pathways, xenobiotics and amino acid metabolism, cell signalling, oxyradical metabolism, peroxisomal assembly, respiration and cytoskeleton pathway, etc. Generally, these findings suggest that protein expression signatures could become a valuable tool to monitor the presence of pollutants in marine environment.
|
362 |
Antibody-based Profiling of Expression Patterns using Cell and Tissue MicroarraysStrömberg, Sara January 2008 (has links)
In this thesis, methods to study gene and protein expression in cells and tissues were developed and utilized in combination with protein-specific antibodies, with the overall objective to attain greater understanding of protein function. To analyze protein expression in in vitro cultured cell lines, a cell microarray (CMA) was developed, facilitating antibody-based protein profiling of cell lines using immunohistochemistry (IHC). Staining patterns in cell lines were analyzed using image analysis, developed to automatically identify cells and immunohistochemical staining, providing qualitative and quantitative measurements of protein expression. Quantitative IHC data from CMAs stained with nearly 3000 antibodies was used to evaluate the adequacy of using cell lines as models for cancer tissue. We found that cell lines are homogenous with respect to protein expression profiles, and generally more alike each other, than corresponding cancer cells in vivo. However, we found variability between cell lines in regards to the level of retained tumor phenotypic traits, and identified cell lines with a preserved link to corresponding cancer, suggesting that some cell lines are appropriate model systems for specific tumor types. Specific gene expression patterns were analyzed in vitiligo vulgaris and malignant melanoma. Transcriptional profiling of vitiligo melanocytes revealed dysregulation of genes involved in melanin biosynthesis and melanosome function, thus highlighting some mechanisms possibly involved in the pathogenesis of vitiligo. Two new potential markers for infiltrating malignant melanoma, Syntaxin-7 and Discs large homolog 5, were identified using antibody-based protein profiling of melanoma in a tissue microarray format. Both proteins were expressed with high specificity in melanocytic lesions, and loss of Syntaxin-7 expression was associated with more high-grade malignant melanomas. In conclusion, the combination of antibody-based proteomics and microarray technology provided valuable information of expression patterns in cells and tissues, which can be used to better understand associations between protein signatures and disease.
|
363 |
Gill EROD Activity in Fish : A Biomarker for Waterborne Ah-receptor AgonistsAbrahamson, Alexandra January 2007 (has links)
Induction of the cytochrome P450(CYP)1A protein and the connected increase in 7-ethoxyresorufin O-deethylase (EROD) activity are common biomarkers in fish. Enhanced activity of this protein signals exposure to Ah-receptor agonists such as chlorinated dioxins, co-planar polychlorinated biphenyls (PCBs) and certain polycyclic aromatic hydrocarbons (PAHs). The EROD biomarker is commonly analyzed in liver microsomes. However, the gill is directly exposed to waterborne pollutants, and in this thesis the gill filament EROD assay was therefore evaluated as a monitoring tool for waterborne CYP1A inducers in fish. Originally developed in rainbow trout (Oncorhynchus mykiss), the assay was here applied in various limnic and marine species. Following exposure to low waterborne concentrations of the readily metabolized CYP1A inducers benzo(a)pyrene (BaP) and indigo, a strong EROD induction was observed in the gill but not in the liver. This likely reflected metabolic clearance of the inducers in gill and other extrahepatic tissues. The high sensitivity of the gill was confirmed in studies of fish caged in waters in urban and rural areas in Sweden where the gill consistently showed a more pronounced EROD induction compared with the liver and the kidney. Fish caged in the reference waters showed surprisingly strong gill EROD induction and CYP1A immunostaining. Consequently, there may be CYP1A inducers present in the aquatic environment that are not yet identified. The assay was further applied in Atlantic cod (Gadus morhua) as a biomarker of exposure to crude oil and produced water (PW) from oil fields in the North Sea. The assay was finally adapted to detect inhibiting compounds, and an imidazole, a triazole and a plant flavonoid turned out to be potent gill EROD inhibitors. The overall conclusion from the studies of this thesis is that the gill filament EROD assay is a practical and sensitive biomarker of exposure to waterborne CYP1A inducers in various fish species. The induction of gill EROD activity in fish also at the reference sites in the field studies calls for further studies on background contamination in Swedish waters.
|
364 |
Characterization of the pancreatic β-cell auto antigen targeted by the IC2 monoclonal autoantibodyMia, Md. Golam Kafi Afrose January 2009 (has links)
IC2, a well known monoclonal autoantibody, derived from newly diabetic BB rat and seems to be an important biomarker for non-invasive functional imaging of beta cells in vivo. It specially and uniquely binds with pancreatic beta cells as confirmed in some previous studies. RIN-5AH is a pancreatic beta cell, which reacts with IC2 is used here to identify and characterize the molecular nature of the IC2 auto antigen by using TLC and HPTLC following by immuno-staining. An unpublished work already had done by Spitalnik et al, 1991 with another rat pancreatic beta cell (RINm5F) extracted glycolipids. In this study, the same work was done, not only with glycolipids from various cell lines but also lipids extracted from purified plasma membrane is made to confirm or refuge that IC2 was found to bind with only the glycolipids containing galactose-3-sulfate. This highly unique observation can however hardly explain the unique beta cell surface specificity without involvement of other more beta cell specific antigenic structures. We are therefore also searching the protein part involved in the auto antigenic determinant. Analyzing the molecular nature of IC2 binding auto-antigen, will help to understand both the role it might plays in the pathogenesis of insulin dependant diabetes. It could also help to elucidate the etiology of diabetes and finally to be a new serum autoantibody biomarker.
|
365 |
Biomarker Discovery in Diabetic Nephropathy by Targeted MetabolomicsLundin, Ulrika January 2008 (has links)
Diabetic nephropathy is a chronic kidney disease and one of the more severe complications from diabetes mellitus type 2. The glomerular and tubular dysfunctions usually lead to end stage renal disease and the treatments of these patients (dialysis, kidney transplants) are a huge economic burden for the society. Due to an epidemiologic increase of type 2 diabetes, conventional diagnostic markers like creatinine and albumin are not sufficient, since they are only able to identify already existing kidney damage. With targeted metabolomics, the analysis of small molecules produced from metabolism, this project aimed at finding novel and more sensitive metabolic biomarkers from several different classes of metabolites. The different assays were performed with flow injection analysis, high performance liquid chromatography, gas chromatography and mass spectrometry, and with principal component analysis and discriminant analysis, up-and down-regulated metabolites could be identified and their respective biochemical pathways, if possible, explained. In diabetics significantly elevated concentrations of very long chain fatty acids (impaired peroxisomal β-oxidation), urinary sugars and acylcarnitines in plasma could be recognized. Markers indicating kidney damage included significantly increased plasma concentrations of asymmetric dimethylarginine (inhibition of nitric oxide synthase resulting in decreased endothelial functionality) and histamine (indication of uremic pruritus). Oxidative stress was also found to be a potential prognostic marker as indicated by the raised methionine-sulfoxide to methionine ratio in nephrotic patients. To summarize, this project succeeded in identifying metabolic biomarkers both for diabetes type 2 and nephropathy, which in the future might become important tools in slowing down progression or diagnosing these diseases.
|
366 |
Precise Size Control and Noise Reduction of Solid-state Nanopores for the Detection of DNA-protein ComplexesBeamish, Eric 07 December 2012 (has links)
Over the past decade, solid-state nanopores have emerged as a versatile tool for the detection and characterization of single molecules, showing great promise in the field of personalized medicine as diagnostic and genotyping platforms. While solid-state nanopores offer increased durability and functionality over a wider range of experimental conditions compared to their biological counterparts, reliable fabrication of low-noise solid-state nanopores remains a challenge. In this thesis, a methodology for treating nanopores using high electric fields in an automated fashion by applying short (0.1-2 s) pulses of 6-10 V is presented which drastically improves the yield of nanopores that can be used for molecular recognition studies. In particular, this technique allows for sub-nanometer control over nanopore size under experimental conditions, facilitates complete wetting of nanopores, reduces noise by up to three orders of magnitude and rejuvenates used pores for further experimentation. This improvement in fabrication yield (over 90%) ultimately makes nanopore-based sensing more efficient, cost-effective and accessible.
Tuning size using high electric fields facilitates nanopore fabrication and improves functionality for single-molecule experiments. Here, the use of nanopores for the detection of DNA-protein complexes is examined. As proof-of-concept, neutravidin bound to double-stranded DNA is used as a model complex. The creation of the DNA-neutravidin complex using polymerase chain reaction with biotinylated primers and subsequent purification and multiplex creation is discussed. Finally, an outlook for extending this scheme for the identification of proteins in a sample based on translocation signatures is presented which could be implemented in a portable lab-on-a-chip device for the rapid detection of disease biomarkers.
|
367 |
Bead based protein profiling in bloodNeiman, Maja January 2013 (has links)
This thesis is about protein profiling in blood-derived samples using suspension bead ar- rays built with protein affinity reagents, and the evaluation of binding characteristics and potential disease relation of such profiles. A central aim of the presented work was to discover and verify disease associated protein profiles in blood-derived samples such as serum or plasma. This was based on immobiliz- ing antigens or antibodies on color-coded beads for a multiplexed analysis. This concept generally allow for a dual multiplexing because hundreds of samples can be screened for hundreds of proteins in a miniaturized and parallelized fashion. At first, protein antigens were used to study humoral immune responses in cattle suffering from a mycoplasma infec- tion (Paper I). Here, the most immunogenic of the applied antigens were identified based on reactivity profiles from the infected cattle, and were combined into an antigen cocktail to serve as a diagnostic assay in a standard ELISA set-up. Next, antibodies and their em- ployment in assays with directly labeled human samples was initiated. This procedure was applied in a study of kidney disorders where screening of plasma resulted in the discovery of a biomarker candidate, fibulin-1 (Paper II). In parallel to the disease related applica- tions, systematic evaluations of the protein profiles were conducted. Protein profiles from 2,300 antibodies were classified on the bases of binding properties in relation to sample heating and stringent washing (Paper III). With a particular focus on heat dependent de- tectability, a method was developed to visualize those proteins that were captured to the beads in an immunoassay by using Western blotting (Paper IV). In conclusion, this thesis presents examples of the possibilities of comparative plasma profiling enabled by protein bead arrays. / <p>QC 20130208</p>
|
368 |
Tissue Microarrays for Analysis of Expression PatternsLindskog Bergström, Cecilia January 2013 (has links)
Proteins are essential building blocks in every living cell, and since the complete human genome was sequenced in 2004, researchers have attempted to map the human proteome, which is the functional representation of the genome. One such initiative is the Human Protein Atlas programme (HPA), which generates monospecific antibodies towards all human proteins and uses these for high-throughput tissue profiling on tissue microarrays (TMAs). The results are publically available at the website www.proteinatlas.org. In this thesis, TMAs were used for analysis of expression patterns in various research areas. Different search queries in the HPA were tested and evaluated, and a number of potential biomarkers were identified, e.g. proteins exclusively expressed in islets of Langerhans, but not in exocrine glandular cells or other abdominal organs close to pancreas. The identified candidates were further analyzed on TMAs with pancreatic tissues from normal and diabetic individuals, and colocalization studies with insulin and glucagon revealed that several of the investigated proteins (DGCR2, GBF1, GPR44 and SerpinB10) appeared to be beta cell specific. Moreover, a set of proteins differentially expressed in lung cancer stroma was further analyzed on a clinical lung cancer cohort in the TMA format, and one protein (CD99) was significantly associated with survival. In addition, TMAs with tissue samples from different species were generated, e.g. for mapping of influenza virus attachment in various human and avian tissues. The results showed that the gull influenza virus H16N3 attached to human respiratory tract and eye, suggesting possible transmission of the virus between gull and human. TMAs were also used for analysis of protein expression differences between humans and other primates, and two proteins (TCF3 and SATB2) proved to be significantly differentially expressed on the human lineage at both the protein level and the RNA level. In conclusion, this thesis exemplifies the potential of the TMA technology, which can be used for analysis of expression patterns in a large variety of research fields, such as biomarker discovery, influenza virus research or further understanding of human evolution.
|
369 |
A Ribosome-inactivating Protein Toxin as a Template for Cancer Drug DiscoveryCheung, Melissa 10 December 2012 (has links)
Cancer cells display aberrant receptors on their surface that can serve as targets for the development of directed drug therapies. As such, our group has utilized two parallel approaches to redirect the cytotoxic properties of a ribosome-inactivating protein (RIP), Shiga-Like Toxin 1 (SLT 1), by altering its receptor specificity to target and kill cancer cells.
The first combinatorial protein library was constructed such that a randomized 7 AA long peptide was inserted within the cytotoxic domain (A chain) of SLT-1. A high-throughput protein-based screening campaign identified a novel A chain toxin variant (named SLT 1AIYSNKLM) capable of targeting and killing human melanoma cells. This variant harbours a peptide insert (IYSNKLM) that directs the A chain to kill human melanoma cell lines. Equilibrium binding studies using 125I-radiolabeled SLT-1AIYSNKLM were conducted to determine the equilibrium binding constant and receptor density on 518-A2 human melanoma cells. When injected into SCID mice bearing a human melanoma xenograft, nanoSPECT/CT imaging as well as the biodistribution profile showed marked tumour uptake and retention of the radiolabeled toxin variant. Furthermore, preliminary experiments have shown that the SLT-1AIYSNKLM receptor is a protein, highlighting the potential for this method to be used in the discovery of novel biomarkers.
A second approach was employed to demonstrate that our toxin-based combinatorial library system can be adapted to target known cancer biomarkers. Specifically, SLT-1 A chain variants harbouring 12-residue inserts were expressed in a phage display library. The library was screened against cell lines expressing the human colon cancer marker carcinoembryonic antigen (CEA; CD66e; CEACAM-5) to identify candidates that not only targeted, but internalized into cancer cells within a 1 h period. Variant, CSTA-10, was found to kill CEA-expressing BxPC-3 cells. Overall, the directed evolution of an RIP template such as SLT-1 represents a novel and powerful strategy for the identification of tumour-targeted toxin variants.
|
370 |
Imaging Biomarkers of Response to Radiation and Anti-angiogenic Agents in Brain TumorsChung, Caroline 30 May 2011 (has links)
There is mounting evidence to support combined therapy with radiation (RT) and antiangiogenic agents (AA) for the treatment of brain tumors. However, the therapeutic benefit of this combined treatment hinges on the specific dose, schedule, and duration of each treatment. Early biomarkers that reflect tumor physiological responses provide key information that could guide these aspects of treatment. Pre-clinical tumor models are invaluable tools for identifying potential biomarkers, their optimal timing for measurement and their ability to guide therapy in clinical translation. This thesis demonstrates the feasibility and potential of serial MRI to guide the design, delivery and measure of early response to combined AA and RT in a murine intracranial glioma model. We identified promising biomarker changes reflecting early treatment response that may ultimately facilitate individualized spatio-temporal delivery of radiotherapy (RT) and anti-angiogenic agents (AA) for brain tumors.
|
Page generated in 0.0937 seconds