11 |
Rapid characterization of biomass the use of near infrared and fluorescence spectroscopy as process analytical technology (PAT) method /Nkansah, Kofi. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains xi, 105 p. : ill. (some col.). Includes abstract. Includes bibliographical references.
|
12 |
Optimization and kinetics study of solvent pretreatment of South African corn cob for succinic acid productionMudzanani, Khuthadzo Edna January 2018 (has links)
A dissertation submitted to the Faculty of Engineering and the Built
Environment, University of the Witwatersrand, Johannesburg, in fulfilment of
the requirements for the degree of Master of Science in Engineering.
October 2017 / Increasing concerns over environmental and geo-political issues on resources’ sustainability
have driven the industries to shift their efforts to produce chemicals from renewable biomass.
Amongst the lignocellulosic biomass, corncob contains cellulose, hemicellulose and lignin
that are built in a compact structure which makes it difficult to access. Pre-treatment is then
applied to make the content to be accessible to enzymatic hydrolysis which breaks down the
polysaccharides to monomers. The sugar monomers can be converted to a wide range of bioproducts
such as biofuels and bio-chemicals. The objective of the study was to determine,
evaluate and optimize the best solvent system to pre-treat corn cob. In addition, the study
evaluated the effect of pre-treatment parameters on the yield of cellulose and hemicellulose
and attempt to develop a kinetic model to explain the dissolution.
Lithium perchlorate, zinc chloride, phosphoric acid, sulphuric acid and sodium hydroxide
were used during the pre-treatment, which was carried out at 70-80 ° C for 6 hours.
Characterization of pre-treated samples showed a significant change in structure after pretreatment
indicating disruption in cell wall of the lignocellulosic material. FTIR revealed a
reduction in phenolic group; indicating that the lignin content has been reduced. The XRD
patterns show that crystallinity was considerably reduced; this was shown by an increase in
calculated crystallinity index (CrI) after LiClO4, ZnCl2, H3PO4 and NaOH pre-treatment. The
CrI of raw corncob (CrI= 32.7%) increased to 46.2 %, 42.3 %, 55.6 % and 53.4 % of LiClO4,
ZnCl2, H3PO4 and NaOH, respectively. The crystallinity index increased for pre-treated
material, indicating that the amorphous cellulose is dissolved in the liquor, as well as lignin
and hemicellulose removal
This study has shown that LiClO4.2H2O pretreatment agent is an efficient solvent system to
pretreat corncob which consecutively increase the accessibility of cellulose and hemicellulose
from the solid fractions. The accessibility was confirmed by an ease hydrolysis of cellulose &
hemicellulose to glucose & xylose respectively. An increase of nearly four times compared to
the untreated corncob. The effect of reaction operating parameters i.e. Reaction time,
temperature and solvent concentration was carried out and then optimized by response
surface methodology (RSM) using Minitab 16. The target was to maximize the yield of
cellulose and hemicellulose. It was discovered that the increase in temperature and reaction
time increase the accessibility of cellulose and hemicellulose until an equilibrium is reached
at 3 & half hours and 176 °c. The pretreatment solvent concentration was discovered to have
an effect on the accessibility but not as much as temperature and time. The best pretreatment
conditions to obtain high polysaccharides conversions to monomers were at 176°c for 3.5
hours using LiClO4.2H2O for 10 g of corncob.
The results obtained from RSM were used to evaluate the temperatures profile, kinetic model
for the corncob pretreatment as a function of temperature. The kinetics of pretreatment were
studied by the amount of glucose, xylose and the lignin removed from the pretreated solids.
The kinetic model of lignin removal and sugars accessibility was identified as a first-order
reaction corresponding to the bulk phase for pretreatment time up to 24 hours. The rate
constant results show that the kinetic rate increased with temperature. The activation energy
for glucose, xylose and lignin were calculated to be 15.0 kJ/mol, 14.2 kJ/mol and 36.54
kJ/mol, respectively. / MT 2018
|
13 |
Mechanochemically assisted synthesis of zeolite catalysts for biomass conversionNada, Majid H 01 August 2019 (has links)
Recently, there has been growing interest in the green synthesis of zeolite (aluminosilicate) materials using solvent-free synthesis methods. Solid starting materials are typically ground for a period of time followed by thermal heating to synthesize crystalline ZSM-5 zeolite. These studies generally have focused on products formed after the thermal heating. However, very little is known about the reaction intermediates formed during the mechanochemical pre-reaction grinding step and how the pre-reaction impacts the subsequent synthetic success.
In this study, the mechanochemical approach used to synthesize ZSM-5 and mordenite zeolite was investigated. Two types of solvent-free synthesis methods were investigated; templated solvent-free synthesis, and template-free and solvent-free synthesis. The effect of grinding time was investigated first to find the optimal grinding time that initiates pre-reactions between the starting materials. Controlled experiments were used to monitor chemical and physical changes occuring during the grinding step.
Subsequently, the effect of different synthesis conditions such as time, temperature, template, SiO2/Al2O3, and Na2O/Al2O3 ratios, and different precursors were studied using the optimal grinding time. Both manual (mortar and pestle) and ball mill (FTS 1000) grinding were used in this study. The synthesized products were characterized using XRD, BET nitrogen adsorption, SEM, and ICP-OES. Finally, selected single-phase synthesized zeolite materials were evaluated for their catalytic performance in biomass conversion process of cellulose and glucose to useful chemicals such as hydroxymethylfurfural (HMF).
|
14 |
Conversion of sugarcane bagasse to carboxylic acids under thermophilic conditionsFu, Zhihong 2007 May 1900 (has links)
With the inevitable depletion of the petroleum supply and increasing energy
demands in the world, interest has been growing in bioconversion of lignocellulosic
biomass (e.g., sugarcane bagasse). Lignocellulosic biomass is an abundant, inexpensive,
and renewable resource. Most of current conversion technologies require expensive
enzymes and sterility. In contrast, the patented MixAlco process requires no enzymes or
sterility, making it attractive to convert lignocellulosic biomass to transportation fuels
and valuable chemicals. This study focuses on pretreatment and thermophilic
fermentation in the MixAlco process.
Ammonium bicarbonate (NH4HCO3) was discovered to be a better pH buffer than
previously widely used calcium carbonate (CaCO3) in anaerobic fermentations under
thermophilic conditions (55°C). The desired pH should be controlled within 6.5 to 7.5.
Over 85% acetate content in the product was found in paper fermentations and bagasse
fermentations. Hot-lime-water-treated bagasse countercurrent fermentations buffered by
ammonium bicarbonate achieved 50–60% higher total product concentrations than those
using calcium carbonate. It was nearly double in paper batch fermentations if the pH
was controlled around 7.0.
Ammonium bicarbonate is a “weak” methane inhibitor, so a strong methane
inhibitor (e.g., iodoform) is still required in ammonium bicarbonate buffered
fermentations. Residual calcium salts did not show significant effects on ammonium
bicarbonate buffered fermentations. Lake inocula from the Great Salt Lake, Utah, proved to be feasible in ammonium
bicarbonate buffered fermentations. Under mesophilic conditions (40°C), the inoculum
from the Great Salt Lake increased the total product concentration about 30%, compared
to the marine inoculum. No significant fermentation performance difference, however,
was found under thermophilic conditions.
The Continuum Particle Distribution Model (CPDM) is a powerful tool to predict
product concentrations and conversions for long-term countercurrent fermentations,
based on batch fermentation data. The experimental acid concentrations and
conversions agree well with the CPDM predictions (average absolute error < 15%).
Aqueous ammonia treatment proved feasible for bagasse. Air-lime-treated bagasse
had the highest acid concentration among the three treated bagasse. Air-lime treatment
coupled with ammonium bicarbonate buffered fermentations is preferred for a “crop-tofuel”
process. Aqueous ammonia treatment combined with ammonium bicarbonate
buffered fermentations is a viable modification of the MixAlco process, if “ammonia
recycle” is deployed.
|
15 |
Renewable energy from corn residues by thermochemical conversionYu, Fei. January 1900 (has links)
Thesis (Ph.D.)--University of Minnesota, 2007. / Advisers: Roger Ruan, Jun Zhu. Includes bibliographical references.
|
16 |
Conversion of hardwoods to ethanol design and economics of delignification and enzyme recycling /Paruchuri, Divya. January 2008 (has links)
Thesis (M. S.)--Chemical Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Muzzy, John; Committee Member: Frederick, Jim; Committee Member: Realff, Matthew. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
17 |
Effect of varying feedstock-pretreatment chemistry combinations on the production of potentially inhibitory degradation products in biomass hydrolysatesDu, Bowen. Chambliss, C. Kevin. January 2009 (has links)
Thesis (M.S.)--Baylor University, 2009. / Includes bibliographical references (p. 54-61).
|
18 |
Potential for energy recovery and its economic evaluation from a municipal solid wastes landfill in Cape TownSerutla, Bokhabane Tlotliso Violet January 2016 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2016. / Landfill gases, principally methane, CH4 are produced from the decomposition of the municipal solid wastes deposited on landfill sites. These gases can be captured and converted into usable energy or electricity which will assist in addressing energy needs of South Africa. Its capture also reduces the problems associated with greenhouse gases. The aim of this study is to estimate gases that can be produced from the Bellville landfill site in Cape Town. The landfill gas capacity was estimated using Intergovernmental Panel on Climate Change (IPCC) model. The IPCC model showed that 48 447m3/year of landfill gas capacity was determined only in 2013. The LFGTE process plant is designed in a manner of purifying landfill gas, which at the end methane gets up being the only gas combusted. As a matter of fact 14 544kg/year of gases which consists mainly methane gets combusted. The average energy that can be produced based on the generated landfill gas capacity (methane gas) is 1,004MWh/year. This translates to R1. 05million per year at Eskom’s current tariff of R2.86 /kWh) including sales from CO2 which is a by-product from the designed process plant. A LFGTE process plant has been developed from the gathered information on landfill gas capacity and the amount of energy that can be generated from the gas. In order, to start-up this project the total fixed capital costs of this project required amounted up to R2.5 million. On the other hand, the project made a profit amounted to R3.9million, the Net profit summed up to R1. 3million and the payback time of Landfill Gas ToEnergy (LFGTE) project is 4years.The break-even of the project is on second year of the plant’s operation. The maximum profit that this project can generate is around R1. 1million. The life span of the plant is nine years. Aspen plus indicated that about 87% of pure methane was separated from CO2 and H2S for combustion at theabsorption gas outletstream. I would suggest this project to be done because it is profitable when by-products such as CO2 sales add to the project’s revenues.
|
19 |
Development of novel systems for bioconversion of cellulosic biomass to useful productsDuedu, Kwabena Obeng January 2016 (has links)
There is increasing concern regarding alternative, sustainable energy sources, such as biofuels, to replace declining oil reserves. The abundance of lignocellulosic biomass makes it the only imaginable resource that can potentially substitute a substantial portion of the fossil fuels we use today, but current methods for producing biofuels from non-food crops are cost intensive and not economically viable. Synthetic biology provides several potential approaches for developing biologically mediated processes for the conversion of lignocellulosic biomass into biofuels. Such systems are based on engineered microbes that produce enzymes for catalysing the conversion of cellulose into fermentable sugars and subsequently into high value products. Effective degradation of cellulose requires multiple classes of enzyme working together. In naturally occurring cellulose degrading microbes, bioconversion is catalysed by a battery of enzymes with different catalytic properties. However, naturally occurring cellulases with multiple catalytic domains seem to be rather rare in known cellulose-degrading organisms. Using synthetic biology approaches, seven cellulases with multiple catalytic domains were engineered and tested to determine the usefulness of such chimeric enzymes to replace cloning of multiple enzymes for biomass conversion. Catalytic domains were taken from Cellulomonas fimi endoglucanases CenA, CenB and CenD, exoglucanase Cex, and β-glucosidase, Cfbglu as well as Cytophaga hutchinsonii cellodextrinase CHU2268. All fusions retained both catalytic activities of the parental enzymes. To investigate the benefits of fusion, Citrobacter freundii NCIMB11490 was transformed with either fused or non-fused enzymes and cultured with cellulose blotting papers as main carbon source. Cells expressing fusions of Cex with CenA or CenD reproducibly showed higher growth than cells expressing non-fused versions, as well as more rapid physical destruction of paper. The opposite was observed for the other combinations. Comparing two different Cex and CenA fusions, CxnA2, which contains two carbohydrate binding modules (CBMs), degraded filter paper faster and led to better growth than CxnA1, which contains only one CBM. It was observed that CxnA1 was exported to the supernatant of E. coli and C. freundii cultures, as also seen for Cex and CenA, although there is no clear biological mechanism for this. Monitoring of growth using colony counts is laborious, but the use of optical density is not possible for cellulose-based cultures as it is affected by the insoluble cellulose particles. The SYBR Green I/propidium iodide live/dead staining protocol was therefore evaluated for growth measurements and was found to allow rapid measurements of large numbers of samples. In conclusion, these studies have demonstrated a simple and useful method for making chimeric proteins from libraries of multiple parts. The results demonstrate that use of fusion proteins can improve biomass conversion in vivo, and could potentially reduce the necessity for cloning of multiple enzymes and improve product yields. A simple and effective method for monitoring growth of bacteria in turbid cultures using a fluorimeter has also been developed.
|
20 |
The rhizosphere as a bioprocess environment for the bioconversion of hard coalIgbinigie, Eric Egbe January 2008 (has links)
Fundamental processes involved in the microbial degradation of coal and its derivatives have been well investigated and documented over the past two decades. However, limited progress in industrial application has been identified as bottleneck in further active development of the field. The sporadic and unanticipated growth of Cynodon dactylon (Bermuda grass) has been observed on the surface of some coal dumps in the Witbank coal mining area of South Africa. Preliminary investigations showed the formation of a humic soil-like material from the breakdown of hard coal in the root zone of these plants. The potential of this system to contribute to industrial scale bioprocessing of hard coal was investigated. This study involved an investigation of the C. dactylon/coal rhizosphere environment and demonstrated the presence of fungal species with known coal bioconversion capability. Amongst these Neosartorya fischeri was identified and its activity in coal bioconversion was described for the first time. Cynodon dactylon plant roots were also shown to be colonized by mycorrhizal fungi including Glomus, Paraglomus and Gigaspora species. The role of plant photosynthate translocation into the root zone, providing organic carbon supplementation of fungal coal bioconversion was investigated in deep liquid culture with the N. fischeri isolate used as the biocatalyst. Organic acids, sugars and complex organic carbon sources were investigated and it was shown that glutamate provided significant enhancement of bioconversion activity in this system. The performance of N. fischeri in coal bioconversion was compared with Phanaerochaete chrysosporium and Trametes versicolor, both previously described fungal species in the coal bioconversion application. Fourier transform infrared spectroscopy indicated more pronounced oxidation and introduction of nitro groups in the matrix of the humic acid product of coal bioconversion in N. fischeri and P. chrysosporium than for T. versicolor. Macro-elemental analysis of biomass-bound humic acid obtained from the N. fischeri catalyzed reaction showed an increase in the oxygen and nitrogen components and coupled with a reduction in carbon and hydrogen. Pyrolysis gas chromatography mass spectroscopy further supported the proposal that the mechanism of bioconversion involves oxygen and nitrogen insertion into the coal structure. The C. dactylon bituminous hard coal dump environment was simulated in a fixed-bed perfusion column bioreactor in which the contribution of organic supplement by the plant/mycorrhizal component of the system was investigated. The results enabled the proposal of a descriptive model accounting for the performance of the system in which the plant/mycorrhizal component introduces organic substances into the root zone. The non-mycorrhizal fungi utilize the organic carbon supplement in its attack on the coal substrate, breaking it down, and releasing plant nutrients and a soil-like substrate which in turn enables the growth of C. dactylon in this hostile environment. Based on these results, the Stacked Heap Coal Bioreactor concept was developed as a large-scale industrial bioprocess application based on heap-leach mineral processing technology. Field studies have confirmed that bituminous hard coal can be converted to a humic acid rich substrate in a stacked heap system inoculated with mycorrhizal and N. fischeri cultures and planted with C. dactylon.
|
Page generated in 0.0643 seconds