581 |
Integrating Remote Sensing and Ecosystem Models for Terrestrial Vegetation Analysis: Phenology, Biomass, and Stand AgeZhang, Gong 01 May 2012 (has links)
Terrestrial vegetation plays an important role in global carbon cycling and climate change by assimilating carbon into biomass during the growing season and releasing it due to natural or anthropogenic disturbances. Remote sensing and ecosystem models can help us extend our studies of vegetation phenology, aboveground biomass, and disturbances from field sites to regional or global scales. Nonetheless, remote sensing-derived variables may differ in fundamental and important ways from ground measurements. With the growth of remote sensing as a key tool in geoscience research, comparisons to ground data and intercomparisons among satellite products are needed. Here I conduct three separate but related analyses and show promising comparisons of key ecosystem states and processes derived from remote sensing and theoretical modeling to those observed on the ground. First, I show that the Moderate Resolution Imaging Spectroradiometer (MODIS) greenup product is significantly correlated with the earliest ground phenology event for North America. Spring greenup indices from different satellites demonstrate similar variability along latitudes, but the number of ground phenology observations in summer, fall, and winter is too limited to interpret the remote sensing-derived phenology products. Second, I estimate aboveground biomass (AGB) for California and show that it agrees with inventory-based regional biomass assessments. In this approach, I present a new remote sensing-based approach for mapping live forest AGB based on a simple parametric model that combines high-resolution estimates of Leaf Area Index derived from Landsat and canopy maximum height from the space-borne Geoscience Laser Altimeter System (GLAS) sensor. Third, I built a theoretical model to estimate stand age in primary forests by coupling a carbon accumulation function to the probability density of disturbance occurrences, and then ran the model with satellite-derived AGB and net primary production. The validated remote sensing data, integrated with ecosystem models, are particularly useful for large-region vegetation research in areas with sparse field measurements, and will help us to explore the long-term vegetation dynamics.
|
582 |
Woody and agricultural biomass torrefaction : experimental study and modelling of solid conversion and volatile species release based on biomass extracted macromolecular componentsGonzález Martínez, María 12 October 2018 (has links) (PDF)
Nowadays, there is an increasing awareness on the importance of biomass waste as a renewable source of energy, materials and chemicals. In this context, the European project MOBILE FLIP aims at developing and demonstrating mobile conversion processes suitable with variousunderexploited agro- and forest based biomass resources in order to produce energy carriers, materials and chemicals. One of these processes is torrefaction, which consists in a mild thermal treatment, occurring typically between 200 and 300°C during a few tens of minutes in a defaultoxygen atmosphere. The solid product obtained has thermal and processing properties closer to coal, and thus is suitable as fuel for combustion or gasification. During torrefaction, condensable coproducts are released, that may also be source of “green” chemicals. It is therefore crucial to characterize them to optimize the torrefaction process and design industrial units. Up to now, only few works have been focused on characterizing and modelling both solid and condensable species during torrefaction versus operating conditions and feedstock type. Furthermore, these studies typically include a reduced number of biomasses. Cellulose, hemicellulose and lignin,which constitute biomass macromolecular composition, are determining properties to predict biomass behaviour during torrefaction. However, torrefaction tests on these constituents are rare and always based on commercial compounds, which were proved as little representative of the native biomass. The objective of this study is to analyse the influence of biomass characteristics, mainly represented by the macromolecular composition in cellulose, hemicellulose and lignin, on the global behaviour of biomass in torrefaction, both in terms of solid mass loss and of productionprofiles of the volatile species released, in function of the operating conditions.14 biomasses from the main biomass families (deciduouswood, coniferous wood, agricultural byproductsand herbaceous crops) were selected for this study. An optimized extraction procedure was proposed to recover cellulose, hemicellulose and lignin fractions from 5 reference biomasses. Experiments were performed on a thermogravimetric analyzer coupled to a gas chromatography mass spectrometer device through a heated storage loop system (TGA-GC/MS). Solid degradation kinetics and volatile release profiles were followed during torrefaction experiments combining non-isothermal (200 to 300°C at 3°C/min) and isothermal (300°C, 30 min) conditions, ensuring the chemical regime thanks to the appropriate operating conditions. The results obtained with the raw materials demonstrated that biomass macromolecular composition is a main factor influencing biomass behavior in torrefaction. Consequently, the heterogeneity of the resource results in a diverse behavior in torrefaction, particularly in the case of agricultural biomasses. The results with the extracted components evidenced their very different behavior compared to thecommercial compounds, particularly in the case of cellulose. This suggests that a limitation could be induced by the common use in literature of commercial components for torrefaction modelling. The impact on the characterization of macromolecular components was also shown to be prevailing in their behavior in torrefaction, especially in the case of hemicellulose sugar composition and cellulose crystallinity. Furthermore, differences in release kinetics of volatile species during torrefaction were observed, even for volatiles belonging to the same chemical family (acids, furans, ketones). Derived from these results, a torrefaction model based on the additive contribution of extracted cellulose, hemicelluloses and lignin to the global behavior of biomass in torrefaction was proposed, and this for the 5 representative biomasses.
|
583 |
Conversion of sugarcane bagasse to ethanol by the use of Zymomonas mobilis and Pichia stipitisFu, Nan, University of Western Sydney, College of Health and Science, School of Natural Sciences January 2008 (has links)
The rapid development of the bioethanol industry globally demonstrates the importance of bioethanol as an alternate energy source to the depleting fossil fuels. To decrease costs and avoid undue pressure on the global food supply, the renewable lignocelluloses appear to be a better substrate for bioethanol production compared to others being investigated. This study investigated the conversion of lignocellulosic material, sugarcane bagasse, to ethanol by the use of Zymomonas mobilis and Pichia stipitis. The investigation of fermentation characteristics of the two strains revealed that their performance on the ethanol production was closely related to the viable cell concentration in the medium. The increase of inoculum size to five fold resulted in an increase in the system co-efficiency to 2.2 fold and 5.2 fold respectively for Z. mobilis and P. stipitis. A theoretical value de (the cell instantaneous ethanol production rate) was introduced to describe the ethanol productivity based on biomass. System co-efficiency proved to be only affected by the viable cell concentration (xC) and de, regardless of ethanol re-assimilation. Immobilized culture of Z. mobilis and P. stipitis showed distinct differences in their characteristics. The bacterium acclimatized to the interior of gel beads; the biomass concentration within the beads increased greater than 10 fold during the reuse of the beads, resulting in an improved fermentation performance. The immobilized P. stipitis gave a similar system co-efficiency level of approximately 0.5 g/l/h under different culture conditions; cell growth in the medium was considerably more vigorous compared to that within the beads. P. stipitis sole-culture on the glucose/xylose medium with a high inoculum size showed a comparable fermentation efficiency with the best result of the co-culture processes. Fermentation of 50.0 g/l of sugar mixture (30.0 g/l glucose and 20.0 g/l xylose) was completed in 20 h with an ethanol yield of 0.44 g/g. No catabolite repression due to glucose was observed for the xylose assimilation. Co-culture of immobilized Z. mobilis and free cells of P. stipitis proved to be the best fermentation scheme on the glucose/xylose sugar mixture co-fermentation. The removal of Z. mobilis after the utilization of glucose improved the stability of the performance. The best result showed that 50.0 g/l sugars were fully converted to ethanol within 19 h, giving an ethanol yield of 0.49 g/g, which is 96% of the theoretical rate. When co-cultured, viable cells of Z. mobilis inhibited the cell activity of P. stipitis, and were capable of growing to high concentration levels without an appropriate carbon source. Acid and enzymatic hydrolysates of sugarcane bagasse showed similar fermentability, but the hydrolysate without overliming significantly inhibited both cell growth and ethanol production of P. stipitis. The co-culture process on the hydrolysate medium successfully utilized 53.56 g/l sugars (32.14 g/l glucose and 21.42 g/l xylose) in 26 h with a yield of 0.43 g/g; this value further increased to 0.49 g/g when ethanol peaked at 40 h. A high cell density proved to be an effective method to improve the system co-efficiency for ethanol production. For the fermentation processes on the sugar medium, results achieved in this study, 10.54 g/l/h for Z. mobilis free cell culture on glucose, 0.755 g/l/h for P. stipitis free cell culture on xylose, 1.092 g/l/h for P. stipites free cell culture on the glucose/xylose mixture and 1.277 g/l/h for glucose/xylose co-fermentation using co-culture, are higher than the best values reported in the literature in batch culture. In the fermentation of the hydrolysate, the system co-efficiency of 0.879 g/l/h achieved with co-culture is comparable to the best values reported for the fermentation of lignocellulosic hydrolysates. / Master of Science (Hons)
|
584 |
The effects of salinity and sodicity on soil organic carbon stocks and fluxesWong, Vanessa, u2514228@anu.edu.au January 2007 (has links)
Soil is the worlds largest terrestrial carbon (C) sink, and is estimated to contain approximately 1600 Pg of carbon to a depth of one metre. The distribution of soil organic C (SOC) largely follows gradients similar to biomass accumulation, increasing with increasing precipitation and decreasing temperature. As a result, SOC levels are a function of inputs, dominated by plant litter contributions and rhizodeposition, and losses such as leaching, erosion and heterotrophic respiration. Therefore, changes in biomass inputs, or organic matter accumulation, will most likely also alter these levels in soils. Although the soil microbial biomass (SMB) only comprises 1-5% of soil organic matter (SOM), it is critical in organic matter decomposition and can provide an early indicator of SOM dynamics as a whole due to its faster turnover time, and hence, can be used to determine soil C dynamics under changing environmental conditions.¶
Approximately 932 million ha of land worldwide are degraded due to salinity and sodicity, usually coinciding with land available for agriculture, with salinity affecting 23% of arable land while saline-sodic soils affect a further 10%. Soils affected by salinity, that is, those soils high in soluble salts, are characterised by rising watertables and waterlogging of lower-lying areas in the landscape. Sodic soils are high in exchangeable sodium, and slake and disperse upon wetting to form massive hardsetting structures. Upon drying, sodic soils suffer from poor soil-water relations largely related to decreased permeability, low infiltration capacity and the formation of surface crusts. In these degraded areas, SOC levels are likely to be affected by declining vegetation health and hence, decreasing biomass inputs and concomitant lower levels of organic matter accumulation. Moreover, potential SOC losses can also be affected from dispersed aggregates due to sodicity and solubilisation of SOM due to salinity. However, few studies are available that unambiguously demonstrate the effect of increasing salinity and sodicity on C dynamics. This thesis describes a range of laboratory and field investigations on the effects of salinity and sodicity on SOC dynamics.¶
In this research, the effects of a range of salinity and sodicity levels on C dynamics were determined by subjecting a vegetated soil from Bevendale, New South Wales (NSW) to one of six treatments. A low, mid or high salinity solution (EC 0.5, 10 or 30 dS/m) combined with a low or high sodicity solution (SAR 1 or 30) in a factorial design was leached through a non-degraded soil in a controlled environment. Soil respiration and the SMB were measured over a 12-week experimental period. The greatest increases in SMB occurred in treatments of high-salinity high-sodicity, and high-salinity low-sodicity. This was attributed to solubilisation of SOM which provided additional substrate for decomposition for the microbial population. Thus,
as salinity and sodicity increase in the field, soil C is likely to be rapidly lost as a result of increased mineralisation.¶
Gypsum is the most commonly-used ameliorant in the rehabilitation of sodic and saline-sodic soils affected by adverse soil environmental conditions. When soils were sampled from two sodic profiles in salt-scalded areas at Bevendale and Young, SMB levels and soil respiration rates measured in the laboratory were found to be low in the sodic soil compared to normal non-degraded soils. When the sodic soils were treated with gypsum, there was no change in the SMB and respiration rates. The low levels of SMB and respiration rates were due to low SOC levels as a result of little or no C input into the soils of these highly degraded landscapes, as the high salinity and high sodicity levels have resulted in vegetation death. However, following the addition of organic material to the scalded soils, in the form of coarsely-ground kangaroo grass, SMB levels and respiration rates increased to levels greater than those found in the non-degraded soil. The addition of gypsum (with organic material) gave no additional increases in the SMB.¶
The level of SOC stocks in salt-scalded, vegetated and revegetated profiles was also determined, so that the amount of SOC lost due to salinisation and sodication, and the increase in SOC following revegetation relative to the amount of SOC in a vegetated profile could be ascertained. Results showed up to three times less SOC in salt-scalded profiles compared to vegetated profiles under native pasture, while revegetation of formerly scalded areas with introduced pasture displayed SOC levels comparable to those under native pasture to a depth of 30 cm. However, SOC stocks can be underestimated in saline and sodic landscapes by setting the lower boundary at 30 cm due to the presence of waterlogging, which commonly occurs at a depth greater than 30 cm in saline and sodic landscapes as a result of the presence of high or perched watertables. These results indicate that successful revegetation of scalded areas has the potential to accumulate SOC stocks similar to those found prior to degradation.¶
The experimental results from this project indicate that in salt-affected landscapes, initial increases in salinity and sodicity result in rapid C mineralisation. Biomass inputs also decrease due to declining vegetation health, followed by further losses as a result of leaching and erosion. The remaining native SOM is then mineralised, until very low SOC stocks remain. However, the C sequestration potential in these degraded areas is high, particularly if rehabilitation efforts are successful in reducing salinity and sodicity. Soil ecosystem functions can then be restored if organic material is available as C stock and for decomposition in the form of either added organic material or inputs from vegetation when these salt-affected landscapes are revegetated.
|
585 |
Fouling in biomass fired boilersSandberg, Jan January 2007 (has links)
<p>In order to reduce the discharge of the greenhouse gas CO2, the use of biomass is nowadays promoted as fuel in boilers. Compared to boilers fired with coal and oil the biomass-fired boilers have more complications related to both fouling and corrosion on the heat transfer surfaces. After the combustion, unburned inorganic matter in state of vapour, melts and solid particles are transported in the flue gas and may form deposits on heat transfer surfaces.</p><p>Deposits on the heat transfer surfaces may result in both increasing corrosion and decreasing boiler efficiency as the heat transfer rate to the superheaters and reheaters decrease by deposits.</p><p>In order to understand the process of deposit build-up, the whole combustion and transport process had to be analysed including aspects such as, boiler design, fuel properties and combustion environment, followed by particle transport phenomena and the probability for particles to get stuck on the heat transfer tubes.</p><p>In this thesis numerical simulation of particle trajectories has been conducted as well as measurements of deposits on a special designed deposit probe followed by investigation of on-site measurements of deposit depth on the super-heater tubes in a circulating fluidised bed in Västerås, Sweden.</p><p>Numerical simulations of particle trajectories in the vicinity of two super-heater tubes were conducted in an Eulerian-Lagrangian mode considering the flue gas and ash particles phase. Particle impingements on the tubes were investigated for different particle sizes. The results from the particle trajectory simulations show that particle larger than 10 µm will mainly impinge on the windward side of the first tube but, however also on the sides of the second tube in the flue gas flow direction. In theory as well as from observations and measurements two tubes can merge together by the deposit build-up. Smaller particles are usually more dispersed due to turbulence and thermophorectic forces, resulting in a more even impingement distribution on the whole surface of the tubes.</p><p>Probe measurements reveal that the deposit layer growth rate have a significant temperature and time dependence. After the initial deposit build-up a sintering process occurs and sintering is also proven to be dependent on temperature and exposure time.</p><p>Soot-blowing is the most common method to reduce the effect of deposits on the heat transfer tubes. In the present thesis the soot boiling efficiency is therefore also investigated. The soot-blowing show a strong positive effect on the heat transfer rate in a short time (hours) perspective after a soot-blowing cycle is completed. This positive effect is much weaker when considering a time period of three years. This is an effect of fact that soot-blowing mostly remove the loose part of the deposit material leaving the hard sintered part unaffected.</p><p>The subject of deposit build up on superheater tubes in large scale boilers involves multi-discipline knowledge and historically, the related research is mostly conducted as measurements and experiments on operating plants. Possibly in the future, theoretical simulations will have a bigger part of research on deposit build-up where the calculations are to be calibrated through measurements on real sites plants.</p>
|
586 |
Evaluation of Pre-processing and Storage Options in Biomass Supply Logistics: A Case Study in East TennesseeGao, Yuan 01 August 2011 (has links)
Biofuels have been widely recognized as a potential renewable energy source that can lessen the United States’ dependence on imported petroleum and enhance the domestic economy. Particularly, biofuels derived from lignocellulosic biomass (LCB) have been the focus in the development of a sustainable biofuels industry. However, technical barriers in the LCB feedstock supply chain have been one of the major challenges impeding the economic viability of this industry. To expedite the commercialization process of LCB-based biofuels production, this paper employed a spatial mixed-integer mathematical model to explore the optimal biomass logistic system for a switchgrass-based biofuels biorefinery in East Tennessee.
The evaluated logistic systems in this study included five conventional systems (one round bale system, one square bale system, and three mixed bale systems) in the baseline scenario and one stretch-wrap bale system in the preprocessing scenario. Results showed that the stretch-wrap bale system could potentially reduce total logistic cost of switchgrass by 12 to 21% compared that of the conventional systems. Also, the result of the optimal case in the conventional systems suggested that the mixed bale system without storage protection is most economical after taking into account the dry matter loss during storage.
This study also provided information regarding the optimal location of a biorefinery, a switchgrass production plan, monthly harvested and delivered tonnage, and the draw area of switchgrass under each logistic system. The optimal location of a commercial-scale biorefinery was identified to be located in the northwest of Monroe County, a location close to the demonstration plant in Venore, Tennessee. Additionally, this study showed that the percentage of available hay land used for switchgrass production, the switchgrass-ethanol conversion rate, the energy prices, and the storage dry matter loss of compact switchgrass bale produce significant impacts on the total logistic cost of switchgrass for the biorefinery.
|
587 |
Biomass production of five populus clones, soil carbon and soil water content in a central Missouri floodplainDowell, Ryan. January 2006 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2006. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (February 7, 2007) Includes bibliographical references.
|
588 |
The impact of non-native woody plants on the native herbivorous insect community of northern DelawareZuefle, Marion E. January 2006 (has links)
Thesis (M.S.)--University of Delaware, 2006. / Principal faculty advisor: Douglas W. Tallamy, Dept. of Entomology & Wildlife Ecology. Includes bibliographical references.
|
589 |
Analysis of chemical and physical processes during the pyrolysis of large biomass pellets /Chan, Wai-chun Ricky. January 1983 (has links)
Thesis (Ph. D.)--University of Washington, 1983. / Vita. Bibliography: leaves 169-182.
|
590 |
An integrated approach for techno-economic and environmental analysis of energy from biomass and fossil fuelsMohan, Tanya 25 April 2007 (has links)
Biomass conversion into forms of energy is receiving current attention because of environmental, energy and agricultural concerns. The purpose of this thesis is to analyze the environmental, energy, economic, and technological aspects of using a form of biomass, switchgrass (panicum virgatum), as a partial or complete replacement for coal in power generation and cogeneration systems. To examine the effects of such a substitution, an environmental biocomplexity approach is used, wherein the agricultural, technological, economic, and environmental factors are addressed. In particular, lifecycle analysis (LCA) and a three-dimensional integrated economic, energy and environmental analysis is employed. The effectiveness of alternate technologies for switchgrass preparation, harvest and use in terms of greenhouse gas impact, cost and environmental implications is examined. Also, different scenarios of cofiring and biomass preparation pathways are investigated. Optimization of the total biomass power generation cost with minimum greenhouse gas effect is undertaken using mathematical programming for various alternate competitive biomass processing pathways. As a byproduct of this work a generic tool to optimize the cost and greenhouse gas emissions for allocation of fuel sources to the power generating sinks is developed. Further, this work discusses the sensitivity of the findings to varied cofiring ratios, coal prices, hauling distances, per acre yields, etc. Besides electricity generation in power plants, another viable alternative for reducing greenhouse gases (GHGs) is the utilization of biomass in conjunction with combined heat and power (CHP) in the process industries. This work addresses the utilization of biowaste or biomass source in a processing facility for CHP. A systematic algebraic procedure for targeting cogeneration potential ahead of detailed power generation network design is presented. The approach presented here effectively utilizes the biomass and biowaste sources as external fuel, and matches it with the use and dispatch of fuel sources within the process, heating and non-heating steam demands, and power generation. The concept of extractable energy coupled with flow balance via cascade diagram has been used as a basis to construct this approach. The work also discusses important economic factors and environmental policies required for the cost-effective utilization of biomass for electricity generation and CHP.
|
Page generated in 0.0598 seconds