• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Induktion und Kontrolle hierarchischer Ordnung durch selbstorganisierte, funktionale Polymer-Peptid-Nanostrukturen / Induction and control of hierarchical organization with self-assembled, functional polymer peptide nanostructures

Kessel, Stefanie January 2008 (has links)
Im Rahmen der Arbeit werden hierarchisch strukturierte Silikakompositfasern präsentiert, deren Bildung ähnlich zu natürlichen Silifizierungsreaktionen verläuft. Als Analoga zu Proteinfilamenten in Silika Morphogeneseorganismen werden selbstorganisierte, funktionale Polyethylenoxid-Peptid-Nanobänder eingesetzt. Mit der Isolierung einheitlicher Nanokompositfasern wird gezeigt, dass die PEO-Peptid-Nanobänder eine starke Bindungsaffinität gegenüber Kieselsäure besitzen, diese aus sehr stark verdünnten Lösungen anreichern und deren Kondensation zu Silikanetzwerken kontrollieren können. In höheren Konzentrationen entstehen durch die peptidgeleitete Silifizierung der PEO-Peptid-Nanobänder spontan makroskopische Kompositfasern mit sechs Hierarchieebenen. Diese verbinden Längen von bis zu 3 cm und Durchmesser von 1-2 mm mit einer definierten Feinstruktur im Submikrometerbereich. Als Resultat der komplexen inneren Struktur und der Kontrolle der Grenzflächen zwischen Nanobändern und Silika wird eine Nanohärte erreicht, die schon ~1/3 der Härte von Bioglasfasern darstellt. Für die Elastizität (reduziertes Eindrückmodul) dagegen konnte durch den relativ hohen Anteil (~40%) an verformbaren, organischen Komponenten ein ~4-mal größer Wert im Vergleich mit Bioglasfasern bestimmt werden. Des Weiteren wird die Prozessierung der makroskopischen Kompositfasern in einem 2D-Plotprozess vorgestellt. Mit Verwendung der PEO-Peptid-Nanobänder als „Tinte“ können Kompositobjekte in beliebigen Formen geplottet werden, deren Linienbreite sowie anisotrope Ausrichtung der Nano- und Submikrometerstrukturelemente direkt mit der Plotgeschwindigkeit korrelieren. Außerdem können die Kompositobjekte als Vorstufen für orientierte, mesoporöse Silikaobjekte verwendet werden. Nachdem Calcinieren werden Silikastrukturen mit einer hohen spezifischen Oberfläche und in Plotrichtung ausgerichteten zylindrischen Poren erhalten. Im Kontrast zu den anorganisch-bioorganischen Kompositfasern sollten unter Ausnutzung ionischer Wechselwirkungen oder Metallkoordination Kompositmaterialien mit anderen mechanischen Eigenschaften dargestellt werden. Es wird gezeigt, dass durch Variationen in der Aminosäuresequenz des Peptidkerns, die Oberflächen der PEO-Peptid-Nanobänder gezielt mit funktionellen Gruppen versehen werden können. Eine gerichtete Vernetzung dieser modifizierten Nanobänder wurde nicht erreicht, dafür könnten die imidazolfunktionalisierten Nanobänder als eindimensionale Protonenleiter, die mit photochromen Gruppen (Spiropyran) funktionalisierten Nanobänder für die Modifizierung von Oberflächenpolaritäten oder für gerichtete Kristallisationsprozesse eingesetzt werden. / In this work hierarchical structured silica-composite fibers are presented, whose formation is similar to natural silicification processes. Self-assembled, functional poly(ethylene oxide) (PEO) peptide nanotapes were utilized as analogue to protein filaments in silicamorphogenese organism. Isolation of homogenous nano composite fibers demonstrates that the PEO peptide nanotapes have a high affinity to bind silicic acid. They are able to enrich silicic acid from very dilute solution and can control the silica condensation process. Macroscopic composite fibers spontaneously arise if the PEO peptide nanotapes in a higher concentration were mixed with the silica precursor. These exhibit six distinguishable levels of hierarchical order, spanning length scales from the nanometer up to millimeters in lateral and even centimeters in longitudinal dimensions. As a result of the inner structure, reinforced composite fibers were obtained, exhibiting 1/3 of the mechanical hardness of natural glass sponge spicules. The elasticity, which is considered as one limiting factor in optical glass fibers, could be enhanced 4-times due to the incorporation of an increased amount of polymer peptide nanotapes (~40%). In addition a 2D-plot process is introduced, in which the polymer peptide nanotapes acts as an ink. By injecting a solution of the nanotapes into a diluted silicic acid solution composite objects can be plotted in any desired way. The width of the plotted lines as well as the anisotropic orientation of the nano- and sub micrometer structure elements correlates directly to the plotting speed. Besides the composite objects can be utilized as precursors for oriented, mesoporous silica objects. After a calcination procedure silica structures with cylindrical pores, aligned in plot direction, and a high specific surface area were received. In contrast to the inorganic-organic composite fibers other composite materials with different mechanical properties should be created exploiting ionic interactions or metal coordination. A variation in the amino acid sequence of the peptide core leads to an aimed functionalisation of the nanotape surfaces. A directed networking of such nanotapes was not observed, but imidazole functionalised nanotapes could maybe be used as one dimensional proton conductors. The nanotapes, which were tagged with photo chromic spiropyran units, have the ability to be used for controlled crystallization processes or the modification of surface polarities.
2

Vibrational spectroscopy as a tool to understand plant silicification

Rodriguez Zancajo, Victor Manuel 28 October 2021 (has links)
Die Ablagerung von Siliziumdioxid ist ein verbreitetes Phänomen, das mit der Toleranz von Pflanzen gegenüber Belastungen korreliert. Die Pflanzen akkumulieren das amorphe Siliziumdioxid in mikroskopischen Partikeln, den Phytolithen, jedoch ist der exakte Mechanismus nicht vollständig aufgeklärt. Um ein besseres Verständnis über die Ablagerung von Siliziumdioxid zu erlangen, wurden verschiedene spektroskopische Techniken an Sorghumblättern und molekularen Modellen angewandt. Festkörper Kernspinresonanz und thermogravimetrische Analysen zeigen, dass die Siliziumdioxidstruktur von der Phytolithe-Extraktion abhängt. Basierend auf Raman- und IR-Daten einzelner Phytolithe lassen sich die Änderungen dieser Strukturen ermitteln. Das deutet auf unterschiedliche biologische Prozesse der Ablagerung des Siliciumdioxids hin. Die Pflanzengewebe in denen Siliciumdioxid abgelagert ist, wurden mit einem multimodalen Ansatz charakterisiert, welcher Fluoreszenz-, Hellfeld- und Rasterelektronenmikroskopie beinhaltet. Die chemische Zusammensetzung der Pflanzengewebe wurden mit Raman- und FTIR-Mikrospektroskopie kartiert. Ein neuartiger Ansatz zur Untersuchung von Pflanzengeweben wurde verwendet, basierend auf der optischen Nahfeldmikroskopie im mittleren IR-Bereich. Dieser ermöglicht eine kombinierte Analyse von mechanischen Materialeigenschaften sowie der chemischen Zusammensetzung und Struktur. Um die Rolle der organischen Matrix zu verstehen, wurden Modellverbindungen betrachtet, die die Ablagerung von Kieselsäure in den Pflanzen induzieren können. In-vitro-Reaktionen konnten eine gleichzeitige Präzipitation von Lignin und Siliciumdioxid sowie eine Polymerisation zusammen mit Peptiden simulieren. Die Ergebnisse lassen starke Wechselwirkungen zwischen diesen Verbindungen vermuten. Neben einem besseren Verständnis verschiedener Aspekte der Silifizierung von Pflanzen werden in dieser Arbeit neue Methoden zur Charakterisierung von Pflanzenproben vorgeschlagen. / Silica deposition is a common phenomenon that correlates with plant tolerance to various stresses. Plants accumulate amorphous silica in microscopic particles termed phytoliths, through yet unclear mechanisms. With the aim to gain better understanding of the processes that govern silica deposition, different vibrational techniques were used on sorghum leaves and molecular models to obtain chemical and structural information addressing different length scales. Solid-state Nuclear Magnetic Resonance and thermogravimetric analysis showed that phytolith extraction methods affect silica structure. Nevertheless, Raman and IR analysis of individual phytoliths revealed differences in the structure and composition between phytolith types, suggesting the existence of different biological pathways for silica deposition. The environment of sorghum tissues where silica is deposited was assessed using a multimodal approach consisting of fluorescence, brightfield and scanning electron microscopies, while chemical composition was mapped using Raman and Fourier transformed Infrared microspectroscopy. Scattering-type near-field optical microscopy in the mid-infrared region was used to characterize the plant tissues, in both fixed and native plant samples. The nano-IR images and the mechanical phase image enabled a combined probing of mechanical material properties together with the chemical composition and structure of both the cell walls and the phytolith structures. In vitro reactions simulating lignin-silica co-precipitation and silica polymerization with peptides revealed strong interaction between these compounds and silica, and their possible involvement in silica deposition in the plant. This thesis provides a better understanding of the chemical process that control plant silicification, suggests new methodologies to characterize plant samples, and evaluates the current methods used in plant science.

Page generated in 0.0809 seconds