391 |
Subgrouping of Asthma Cases Based on Molecular Disease MechanismsRing, Elin January 2024 (has links)
Asthma is a complex airway disease with many factors contributing to its development, resulting in several sub-phenotypes that have different underlying mechanisms. Obesity is a risk factor for asthma and its contribution to the risk of developing asthma was investigated in this project. The primary aim of this project was to identify possible sub-clusters of asthma-related genetic variants when considering obesity as risk factor for the disease. The secondary aim was to identify the causal pathways mediating the increased risk of asthma in each cluster. Genome-wide association studies (GWAS) summary statistics for body mass index (BMI) and asthma, were harmonized into one file, yielding a number of 91 variants after meeting criteria. Mendelian Randomisation Clustering was used to cluster genetic variants with similar causal estimates by which BMI influences asthma. Only one cluster was observed, suggesting that the genetic variants possibly act through the same causal pathway. The result also showed a small positive association between the genetic variants and asthma through BMI. This result is consistent with the calculated causal estimate, giving an odds ratio of 1.22, suggesting that obesity is associated with a higher risk of asthma. Possible molecular pathways were studied by first test for association between polygenic risk scores for BMI and around 3000 proteins available in the UK Biobank. The proteins that had a significant association were tested for association with asthma. The result show that some proteins are found to be associated with either increased or decreased asthma risk. These proteins are, however, not significant when corrected for multiple testing. The proteins' function and potential association with asthma were investigated, revealing that the GSTA1 protein may have a protective effect against asthma. These results are, however, difficult to interpret since they do not agree with results obtained in previous studies. More studies are required to investigate possible molecular pathways.
|
392 |
Optimization of culture conditions and extraction method for phycocyanin production from a hypersaline cyanobacteriumMogany, Trisha 08 August 2014 (has links)
Submitted in fulfilment of the requirements of the degree of Master of Technology: Biotechnology, Durban University of Technology, 2014. / Cyanobacteria contain phycocyanin a light harvesting pigment found to have numerous biotechnological applications, such as: a natural colorant in food and cosmetics, fluorescent tags employed in clinical and immunological research and also in therapeutic processes. Successful phycocyanin production depends on growth characteristics, ability to accumulate high quantities of the pigment, and an effective downstream process. Therefore, the aim of this research was to optimize the extraction method and production by determining the optimal cultivation conditions for phycocyanin producing cyanobacterium. This cyanobacterium was isolated from a hypersaline water body in Kwa-Zulu Natal, and subsequently purified using traditional streak and spread plate techniques. Different cell disruption techniques and a range of buffers were evaluated for the extraction of phycocyanin. The buffer concentrations and pH was subsequently optimized. Results showed that maximum phycocyanin was extracted when cells were suspended in 50mM sodium phosphate buffer (pH-7.5) supplemented with 10 % lysozyme and then disrupted using the freeze–thaw method at -20 & 4°C. The UV-Vis absorption spectral scan of the crude extracted pigments showed a peak at 620 nm. This corresponds to phycocyanin production. Unwanted proteins were removed using a 25and 50% saturated ammonium sulphate precipitation, followed by dialysis. SDS-PAGE showed two subunits with molecular masses of 19 and 20 kDa. These masses corresponded to phycocyanin α and β subunits. Furthermore, a food grade purity ratio (A615/A280) of 1.20 was achieved. The effects of various abiotic factors (temperature, light and pH) on growth and phycocyanin production of the Cyanothece sp. was investigated. Temperature ranging from 20-45°C and pH (5-10) was evaluated for 2 weeks. Cultures were then subjected to four photoperiods (24:0, 18:06 12:12 and 8:16 h light: dark) three light intensities (25, 75 and 125 µmol photons per m2 per –s) at varying wavelengths i.e. blue, red and green and Grolux light. Ideal conditions were observed at 35°C, 125 µmol photons.m2.s-1 of Grolux light for a 16:8 light and dark photoperiod. It was observed that the highest biomass and phycocyanin production was found to be at 35°C, temperatures below or above resulted in a decrease in both growth and pigment synthesis. Phycocyanin concentration changed in response to light quality and intensity. A significantly higher (p<0.05) phycocyanin yield was found when the culture was exposed to 125 µmol photons.m2.s-1 of Grolux light compared with the other three light conditions. Using Design of experiments, a series of fractional factorial experiments were carried out to optimize media components for pigment production. The final optimized growth medium was determined from a central composite design using response surface plots together with a mathematical point-prediction tool and consisted of 2g/L NaNO3, 0.06g/L K2HPO4, 0.12 g/L MgSO4.7H2O, 0.033 g/L CaCl2.2H2O, 100g/L NaCl, 12mL minor nutrients and 0.5 trace metal. A 72 % increase in phycocyanin was observed. This research revealed that this particular Cyanothece sp. shows great potential as a reliable source of phycocyanin.
|
393 |
Strategies to control bacteriophage infection in a threonine bioprocessCele, Nolwazi January 2009 (has links)
Submitted in partial fulfillment of the academic requirements for the degree of Master of Technology: Biotechnology, 2009. / Production of numerous biotechnologically-important products such as
threonine is based on cultivation of bacterial cultures. Infection of these
bacterial cultures by bacteriophages has a detrimental effect in the production
of these bioproducts. Despite this, most people controlling these bioprocesses
do not recognize the early signs of bacteriophage infection. SA Bioproducts
(Ply) Ltd was no exception and has suffered tremendous loss of production
time after bacteriophages infected threonine producing E. coli strain B. This
study was aimed at developing assays to control and prevent bacteriophage
infection at this company. These included determining the source of phages
by monitoring the process plant environment, optimising the detection and
enumeration methods so as to monitor the levels of bacteriophages in the
environment, identification of bacteriophages in order to determine the
number of bacteriophages capable of infection threonine producing E. coli
strain B, treatment and of phages, and possible prevention of phage infection.
Adam's DAL method was very efficient at detecting phages in the samples
collected at various areas (sumps, odour scrubber, process water, and soil)
around the plant for 16 weeks. High levels of phages were found in the sumps
and this was identified as the source of infection. Samples collected were
grouped together according to their source. The samples were enriched and
purified in order to characterise them. The prevalent phage in all samples was
identified as a T1-like phage. Bacterial strains that grew on the plate in the
presence of phages were assumed to be resistant to phages or contained
lysogenic phages which would explain the new lytic cycles that were observed
whenever these resistant strains were used for production. UV light, green
v
indicator plates, and a mutagen (Mitomycin C) were used to detect Iysogens.
Mitomycin C at 1 IJg/ml was found to be most effective in detecting lysogenic
phages. This was shown by new plaque forming units that were visible on the
DAL plates. Temperature (heat), chemicals, and inhibitors (vitamins) were
investigated as strategies for prevention and treatment of bacteriophage
infection. Bacteriophage samples were exposed to 70, 80, 100, and 120°C. At
these temperatures pfu counts in the samples were reduced significantly. At
120°C there was a complete inactivation of bacteriophages within 30 minutes.
Chemicals investigated such as sodium hydroxide and Albrom 100T were
capable of complete deactivation of bacteriophages at a very low
concentration (0.1%). Therefore, these chemicals can be used to clean the
plant area and sumps. Vitamins C, K and E solutions were investigated to
determine their inhibitory effect on bacteriophages. Vitamin C, K and E
reduced pfu counts by 3, 2, and 4 logs, respectively. Therefore vitamin C and
E solutions were mixed and to determine if mixing them would enhance their
inactivation capabilities. This resulted in a reduction greater than 9 logs of
phage in the sample (from 7.7 x 109 to 3 pfu/ml). The host bacterium was also
exposed to this mixture to determine effect of the vitamin mixture on its
growth. It was found that there was no effect exerted by this mixture on the
host bacteria. This proved to be an ideal mixture for combating phages during
fermentation. However, vitamin E is not cost effective for co-feeding in 200 m'
fermenters, and therefore vitamin C solution was a cost-effective alternative. It
was concluded that bacteriophage contaminated bioprocessing plant should
be properly cleaned using a combination of heat and chemicals.
Bacteriophage infection should be prevented by employing inhibitors.
|
394 |
Screening for indigenous algae and optimisation of algal lipid yields for biodiesel productionRawat, Ismail January 2011 (has links)
Submitted in fulfilment of the requirements of the Degree of Master of Technology: Biotechnology, Durban University of Technology, 2011. / The depletion of global energy supplies coupled with an ever increasing need for energy and the effects of global warming have warranted the search for alternate renewable sources of fuel such as biodiesel. First generation biofuels are not sustainable enough to meet long term global energy requirements and more recently there has been concern expressed as to the potential negative implication of crop based biofuels in the form of negative energy balances and potentially no greenhouse gas benefit due to land utilisation not being taken into account. Microalgae have shown great promise as a sustainable alternative to first generation biofuels. They have faster growth rates, have greater photosynthetic efficiencies, require minimal nutrients and are capable of growth in saline waters which are unsuitable for agriculture. Microalgae utilise a large fraction of solar energy and have the potential to produce 45 to 220 times higher amounts of triglycerides than terrestrial plants. The use of microalgae for biodiesel production requires strain selection, optimisation and viability testing to ascertain the most appropriate organism for large scale cultivation. This study focuses on bioprospecting for indigenous lipid producing microalgae, screening, selection and optimisation of growth and lipid yields with respect to nutrient limitation. Further we have ascertained the sustainability of a selected species of microalgae in open pond system. Chlorella sp. and Scenedesmus sp. were found to be dominant amongst the isolates. Strains we selected and underwent media selection and growth and lipid optimisation trials. BG11 media was selected as the most appropriate media for the growth of the selected Chlorella and Scenedesmus strains. Little variation in growth was observed for both cultures ten days into cultivation under varying nitrate concentrations. Phosphate optimum was shown to be 0.032g/l for Scenedesmus sp and 0.04g/l for Chlorella sp. Best lipid yield determined during exponential growth was achieved in cultures with 0.3g/L to 0.6g/L nitrate and phosphate as per BG11 medium. pH optimisation showed that cultures may be adapted to growth at higher pH over time. The optimum pH range for growth was determined to be narrow and was found to be between pH 10 and pH 11. Chlorella sp. was shown to be sustainable as a dominant culture in open pond system. Open pond systems however are prone to contamination by other species of microalgae within weeks of inoculation. / National Research Foundation.
|
395 |
Biosynthesis and antibacterial activity of silver and gold nanoparticles from the leaf and callus extracts of Amaranthus dubius, Gunnera perpensa, Ceratotheca triloba and Catharanthus roseusPatel, Naazlene 17 September 2013 (has links)
Submitted in complete fulfillment for the Degree of Master of Technology: Biotechnology, Durban University of Technology, 2013. / The biosynthesis of NPs has many advantages over the tedious, expensive and toxic
physical and chemical methods of synthesis. Plants are stocked with valuable metabolites
that are capable of reducing metal salts to form NPs. In this study, aqueous leaf extracts of
A. dubius, G. perpensa, C. roseus and C. triloba were reacted with AgNO3 and HAuCl4 to
determine the plants reducing abilities and hence synthesis of Ag and Au NPs capabilities.
The synthesis reactions were carried out at different temperatures and extract
concentrations for optimization. The goal was to form NPs within the specific wavelength
range. Polar solvents: methanol and ethyl acetate extractions were carried out at the
optimized conditions to evaluate the best solvent for the extraction of phytochemicals from
the plants. The plant leaf extracts that were successful (A. dubius, G. perpensa and C.
triloba) in synthesizing NPs were then micropropagated to form callus cultures. The
reducing abilities of these callus cultures extracts were determined by varying temperature
and concentration parameters. Characterization of the NPs formed by the different extracts
was performed using UV-vis, TEM and FTIR. UV-vis spectrophotometry was used as a
confirmatory as well as characterizing tool. TEM analysis was able to provide a description
on the size and shape of the NPs whereas FTIR provided information on the biomolecules
responsible for synthesis and capping of NPs. The stability of the NPs was determined by
UV-vis scans over a period of 30 days which allowed observation of the alteration in peak
shape and absorbance and hence condition of particles. Phytochemical tests were
performed on the leaf extracts of the four plants to elucidate possible phytochemicals
responsible for the reduction of metal salts. Antibacterial activity of the NPs was evaluated
by using the disk diffusion assay and MICs were determined by the broth dilution method
against pathogenic bacteria.
A. dubius, G. perpensa and C. triloba were capable of synthesizing Ag NPs and Au NPs
which were indicated by yellowish orange and reddish purple colour changes respectively.
G. perpensa was able to spontaneously form Ag and Au NPs without any addition of heat
whereas A. dubius and C. triloba required heat to form Au NPs. As the temperature of the
reactions increased, the absorbance and possibly the number of NPs produced, increased.
When the concentration of the extract was doubled, the absorbance was seen to decrease.
C. roseus did not produce any Ag or Au NPs with any of the leaf extracts. Only A. dubius
and C. triloba callus extracts were investigated for NP synthesis and it was found that A.
dubius callus extracts were unsuccessful in synthesizing NPs and C. triloba callus extracts
were able to form unstable Ag and Au NPs.
The spherical Ag NPs that were formed from aqueous extracts of A. dubius were slightly
larger than the methanolic Ag NPs. The Ag NPs produced by G. perpensa were in the
same size range for aqueous and methanolic extracts. C. triloba Ag NPs formed from the
methanolic extract were closer in size to A. dubius aqueous Ag NPs but the C. triloba
aqueous extract produced much larger Ag NPs than the other extracts. The Ag NPs
produced from A. dubius aqueous and methanolic extracts as well as C. triloba methanolic
extracts exhibited the longest stability of 30 days. Ag NPs from G. perpensa aqueous
extracts had the least stability.
G. perpensa did not form any hexagonal Au NPs and the spherical and triangular Au NPs
were smaller unlike in A. dubius and C. triloba Au NPs. The Au NPs formed by the
aqueous extracts of A. dubius and C. triloba were larger in comparison to their methanolic
counterparts. The Au NPs produced from G. perpensa aqueous and methanolic extracts as
well as A. dubius and C. triloba methanolic extracts exhibited the longest stability of 30
days. Au NPs were stable for longer in comparison to Ag NPs. FTIR provided evidence
that Ag and Au NPs have a chemical bond with the amide group in amino acids. However
the intensities of biomolecules for Au NPs are more pronounced compared to the Ag NPs.
It was also found that the Ag NPs synthesized by methanolic leaf extracts have slightly
higher intensities than Ag NPs synthesized from aqueous leaf extracts. Phytochemical
screening showed the absence of tannins in the C. roseus leaf, A. dubius and C. triloba
callus extracts and presence in the other three plants.
C. triloba methanolic extract Ag NPs showed the highest activity against Gram-positive S.
aureus. Aqueous and methanolic Ag NPs from G. perpensa and C. triloba as well as A.
dubius methanolic Ag NPs had activity against all fourteen bacteria. A. dubius aqueous Ag
NPs had no activity against Enterobacter spp. and a strain of Klebsiella pneumoniae. G.
perpensa Ag NPs had better antibacterial activity and lower MICs against Gram-positive
and Gram-negative pathogenic bacteria compared to A. dubius and C. triloba. There was
no antibacterial activity seen with Au NPs.
The size and shape of NPs are the keys to their biomedical properties. Green synthesis of
NPs is a feasible way for the future. This study showed that NPs can be synthesized very
easily and economically. A key finding of this study is that different plants produce
varying sizes and aggregation of NPs. / National Research Foundation
|
396 |
A study of wine bouquet precursors in grapesDu Plessis, C. S. (Charl Stegmann) 03 1900 (has links)
Thesis (PhD(Agric))--Stellenbosch University, 1970. / ENGLISH ABSTRACT: no abstract available / AFRIKAANSE OPSOMMING: geen opsomming
|
397 |
Die invloed van sekere mos- en wynbehandelings op die stabiliteit van droe witwyneVan Wyk, C. J. (Cornelius Johannes) 12 1900 (has links)
Thesis (MScAgric)--Stellenbosch University, 1958. / ENGLISH ABSTRACT: no abstract available / AFRIKAANSE OPSOMMING: geen opsomming
|
398 |
Die invloed van verskillende bereidingsmetodes op die chemiese samestelling en gehalte van sjerriesTheron, C. W. (Charel Wynand) 12 1900 (has links)
Thesis (MScAgric)--Stellenbosch University, 1969. / ENGLISH ABSTRACT: no abstract available / AFRIKAANSE OPSOMMING: geen opsomming
|
399 |
Houvermoe van druiwe met spesiale verwysing na dopeienskappeUys, D. C. (Dirk Cornelius) 08 1900 (has links)
Thesis MSc(Agric)--Stellenbosch University, 1973. / ENGLISH ABSTRACT: no abstract available / AFRIKAANSE OPSOMMING: geen opsomming
|
400 |
Die bydrae van sommige gistingsgeurstowwe tot die geur van droe witwyneVan der Merwe, C. A. 03 1900 (has links)
Thesis MSc(Agric)--Stellenbosch University, 1979. / ENGLISH ABSTRACT: no abstract available / AFRIKAANSE OPSOMMING: geen opsomming
|
Page generated in 0.043 seconds