• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • 2
  • Tagged with
  • 30
  • 10
  • 10
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Turnover of plant plasma membrane proteins

Crooks, Kim Chantelle January 1996 (has links)
No description available.
2

Smart polymer nanoscale particles for rapid molecular diagnostics /

Kulkarni, Samarth. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 142-152).
3

Studium nově objeveného proteinu GL50803_16424 u Giardia intestinalis. / Investigation of newly discovered protein GL50803_16424 in Giardia intestinalis.

Pelc, Josef January 2018 (has links)
The anaerobic unicellular eukaryotic organism Giardia intestinalis is a worldwide parasite. Giardiasis, the intestinal disease caused by Giardia, is one of the most common parasitic disease in the developed part of the world, that causes health problems not only to humans but also to animals. This organism is also interesting for its many unique cellular features. One of them is the presence of mitosomes - the organelles derived from mitochondria. Analogously to mitochondria, mitosome is limited by two membranes and shares the mode of the protein transport. However, mitosome does not have its own genome and as far as we know, there is only one pathway of the iron-sulfur cluster biosynthesis in this organelle. Using the in vivo enzymatic tagging technique, several novel mitosomal proteins were identified, including GL50803_16424. The protein GL50803_16424 attracted our attention by interacting with components of all mitosomal subcompartments: the outer membrane, the membrane and the matrix. In addition, the expression of HA-tagged GL50803_16424 resulted in the formation of peculiar structures near the mitosomes never seen before in G. intestinalis. Bioinformatic approaches revealed that the GL50803_16424 has domain similar to the myelodysplasia- myeloid leukemia factor 1-interacting protein. Our...
4

Nové přístupy cílené proti viru hepatitidy typu B / Exploring novel strategies targeting HBV

Šmilauerová, Kristýna January 2019 (has links)
An effective and safe vaccine against Hepatitis B virus already exists, yet morbidity and mortality of this illness are still high. The key to developing a reliable treatment is a deep knowledge of the virus' life cycle and functions of all its components. In the presented work we explored an interactome of the Core protein of the Hepatitis B virus. Using proximity-dependent biotin identification technique (BioID) coupled to mass spectrometry we have identified a list of potential candidates that are either significantly enriched (in total 105 proteins) or less abundant in the presence of the HBV Core protein in the cell (40 proteins). The list also includes known HBV Core interacting proteins SRPK1 and SRPK2, and p53 protein whose expression is known to be repressed due to the HBV Core interaction with the E2F1 transcription factor. Many of the newly identified possible HBV Core interacting proteins are involved in biological processes already known or are suspected to be influenced by the HBV such as translational and transporting processes or gene expression and macromolecule production. Overall, this work comprehensively characterizes the interaction landscape of the HBV Core protein in the live cells and might thus serve as a reliable start for in depth HBV-host interaction analysis. Key...
5

Biotinylation and high affinity avidin capture as a strategy for LC-MS based metabolomics

Rhönnstad, Sofie January 2010 (has links)
<p>Metabolites, small endogenous molecules existing in every living cell, tissue or organism, play a vital role for maintaining life. The collective group of all metabolites, the metabolome, is a consequence of the biochemistry and biochemical pathways that a cell or tissue uses to promote survival. Analysis of the metabolome can be done to reveal changes of specific metabolites which can be a manifestation, a reason or a consequence of for example a disease. The physical chemical diversity amongst these components is tremendous and it poses a large analytical challenge to measure and quantify all of them. Targeting sub groups of the meta­bolome such as specific functional classes has shown potential for increasing metabolite coverage. Group selective labeling with biotin-tags followed by high affinity avidin capture is a well established purification strategy for protein purification.</p><p>The purpose with this project is to explore if it is possible to transfer the avidin biotin approach to metabolomics and use this method for small mole­cules purification. Specifically, this investigation aims to see if it is achievable to make a bio­tinylation of specific functional groups, to increase the sensitivity through reduction of sample complexity in liquid chromatography mass spectrometry metabolomics analyses after high affinity avidin capture. By purifying the analyte of interest and thereby reducing the sample complexity there will be a reduction in ion suppression. The aim is to increase the analytical sensitivity through a reduction in ion suppression during liquid chromatography mass spectrometry analysis.</p><p>Delimitations have been done to only investigate the possibility to obtain a biotinylation of primary amines and amides. As model compounds phenylalanine, spermi­dine, histamine and nicotinamide have been selected.</p><p>The result from this study indicates that it is possible to increase metabolite coverage through biotin labeling followed by high affinity avidin capture. It is a gain in analytical sensitivity of selected model compounds when comparing biotinylation strategy with a control non­biotinylation approach in a complex sample. A broader study of additional model compounds and a method development of this strategy are necessary to optimize a potential future method.</p>
6

Role of a novel C-terminal motif in Pannexin 1 trafficking and oligomerization

Epp, Anna 24 April 2019 (has links)
Pannexin 1 (Panx1) is a metabolite channel enriched in the brain and known to localize to the cell surface, where it is involved in a variety of neuronal processes including cell proliferation and differentiation. The mechanisms through which Panx1 is trafficked or stabilized at the surface, however, are not fully understood. The proximal Panx1 C-terminus (Panx1CT), upstream of a caspase-cleavage site has been demonstrated to be required for Panx1 cell-surface expression. We discovered a previously unreported putative leucine-rich repeat (LRR) motif within the proximal Panx1CT. I investigated the involvement of this putative LRR motif on Panx1 localization and oligomerization. Deletion of the putative LRR motif or uniquely the highly conserved segment of the putative LRR motif resulted in a significant loss of Panx1 cell surface expression. Finally, ectopic expression of Panx1-EGFP in HEK293T cells increased cell proliferation, which was not recapitulated by a Panx1 deletion mutant lacking the putative LRR motif. Overall the findings presented in this thesis provide new insights into the molecular determinants of Panx1 trafficking and oligomerization. / Graduate / 2020-02-14
7

Development of Halomethyl-Triazole reagents for installation of protein post-translational modification mimics

Brewster, Richard Christian January 2018 (has links)
Triazoles have been widely used as amide bond isosteres in chemical biology as linkers and to enhance proteolytic stability. The use of triazoles has grown exponentially since the discovery of the copper (I) catalysed alkyne azide cycloaddition reaction in 2002 as the reaction is solvent and functional group tolerant, and usually high yielding. The reaction is also orthogonal to reactions used in nature, meaning it has become a powerful coupling tool. In post-translational modification (PTM), proteins are modified by covalent attachment of functional groups to amino acid side chains. These PTM processes are generally thought to be dynamic and highly regulated by cell machinery, controlling protein function in response to stimuli. The ability to control function post protein synthesis allows organisms to have a smaller genome, which is advantageous as it reduces the energy required for DNA replication and repair. Research into the function of PTMs has been limited by the difficulty in generating recombinant proteins that bear a single PTM in a specific location. Although many elegant methods have been proposed that solve this problem, to date cysteine alkylation is one of the most successful techniques. For lysine PTMs, thia-lysine II (sLys) derivatives have been shown to be excellent mimics of lysine, where the only perturbation between the native lysine-containing analogue is the switch of a CH2 for S in the side chain. Biotin is a well-known PTM in biotin dependent carboxylases, where biotin is involved in CO2 transfer. Recently biotinylation has also been shown to be a PTM on many other proteins, however the role of biotinylation is not well understood. Biotin triazole III has been shown to be a good mimic of the biotin amide bond and retains excellent affinity to Avidin (Av). In Chapter 1 the effects of modification to the valeryl side chain, and orientation of the biotin triazole bond affect affinity to Av using ITC are investigated. Compounds III, V and VI are shown to have a KD < 120 pM, but further information on the binding affinity of these compounds could not be assessed by ITC. Biotin triazoles III-VI were also shown to be resistant to hydrolysis in serum, unlike the native biotin amide bond, which is hydrolysed by the enzyme biotinidase (BTD). Generation of amide sLys derivatives has been shown to be synthetically challenging. In Chapter 2, the synthesis and applications of chloromethyl-triazole biotin as a sulfhydryl selective alkylation reagent are investigated. The electron withdrawing nature of the triazole was proposed to give a ‘pseudo-benzylic’ halide α to the triazole, thus increasing reactivity. The controlled alkylation of peptides and proteins has shown that chloromethyl-triazole biotin shows enhanced reactivity over many commercial alkylation reagents and also gives good selectivity for cysteine. Alkylation of histone H4K12C gave the singly alkylated product, accompanied by low amounts of double alkylation. Biotinylation was confirmed by Western blot with anti-biotin. Due to the wide range of readily available functional azides, it was envisaged that halomethyltriazoles could be incorporated into other PTM mimics. In Chapter 3, efforts to expand the range of PTMs accessible using halomethyl-triazoles and further enhance the reactivity of chloromethyl triazoles by preparation of bromo- and iodomethyl triazoles are detailed. Synthesis of reagents to mimic malonylation, succinylation and GlcNAcylation PTMs is described and the reactivity of these halomethyl-triazole reagents is assessed. An alternate approach to the development of PTM mimics through cysteine propargylation and subsequent CuAAC coupling is also described in chapter 3. In conclusion, a series of new reagents have been developed to mimic protein PTMs through alkylation of cysteine. The reagents, which include biotin, GlcNAc, succinyl and malonyl mimics, are based on a halomethyl-triazole scaffold and have been successfully reacted with cysteine containing peptides and proteins.
8

A generic capture assay for immunogenicity, using Biacore

Engqvist, Martin January 2013 (has links)
The purpose of this investigation was to create and optimise a capture assay for the detectionof anti-drug antibodies (ADA) in human plasma, using Biacore. We also dealt with the nonspecificplasma binding to mouse-derived anti-biotin which may occur in the capture assay.By paying attention to these things we aimed at reaching as high sensitivity as possible for theADA detection. The capture assay also benefited and gained flexibility from using the same regenerationsolution irrespective of drug and from having a composition that minimises the risk ofdamaging drug epitopes.
9

Biotinylation and high affinity avidin capture as a strategy for LC-MS based metabolomics

Rhönnstad, Sofie January 2010 (has links)
Metabolites, small endogenous molecules existing in every living cell, tissue or organism, play a vital role for maintaining life. The collective group of all metabolites, the metabolome, is a consequence of the biochemistry and biochemical pathways that a cell or tissue uses to promote survival. Analysis of the metabolome can be done to reveal changes of specific metabolites which can be a manifestation, a reason or a consequence of for example a disease. The physical chemical diversity amongst these components is tremendous and it poses a large analytical challenge to measure and quantify all of them. Targeting sub groups of the meta­bolome such as specific functional classes has shown potential for increasing metabolite coverage. Group selective labeling with biotin-tags followed by high affinity avidin capture is a well established purification strategy for protein purification. The purpose with this project is to explore if it is possible to transfer the avidin biotin approach to metabolomics and use this method for small mole­cules purification. Specifically, this investigation aims to see if it is achievable to make a bio­tinylation of specific functional groups, to increase the sensitivity through reduction of sample complexity in liquid chromatography mass spectrometry metabolomics analyses after high affinity avidin capture. By purifying the analyte of interest and thereby reducing the sample complexity there will be a reduction in ion suppression. The aim is to increase the analytical sensitivity through a reduction in ion suppression during liquid chromatography mass spectrometry analysis. Delimitations have been done to only investigate the possibility to obtain a biotinylation of primary amines and amides. As model compounds phenylalanine, spermi­dine, histamine and nicotinamide have been selected. The result from this study indicates that it is possible to increase metabolite coverage through biotin labeling followed by high affinity avidin capture. It is a gain in analytical sensitivity of selected model compounds when comparing biotinylation strategy with a control non­biotinylation approach in a complex sample. A broader study of additional model compounds and a method development of this strategy are necessary to optimize a potential future method.
10

Expression of Biotinylated Multivalent Peptide Antigens in Bacteria for Rapid and Effective Generation of Single Domain Antibodies from Phage-displayed Antibody Libraries

Alturki, Norah 19 November 2012 (has links)
In the present study, two insulin-like growth factor-binding protein 7 (IGFBP7) C-terminal-peptides were expressed as fusion proteins to bacterial verotoxin pentamerization domain as shown by Western blotting, ELISA and mass spectroscopy. Both in vivo-biotinylated recombinant products were purified from bacterial lysates by IMAC and used directly for panning along with the recombinant IGFBP7 protein using the LAC-M Camelidae naïve single domain antibody (sdAb) library. Target-specific sdAbs to both parental protein and peptide fusions were identified by phage ELISA. Twelve different clones were isolated by phage-ELISA screening and their sdAb genes were sequenced. Soluble sdAbs and their pentameric formats were expressed in TG1 E. coli, purified by IMAC and characterized by ELISA and SPR. Several sdAbs are currently under study, however anti-IGFBP7 (P12/M12) was extensively characterized and exhibited promising anti-tumorigenic effect on PANC-1 cell lines by blocking IGFBP7 promoting activity. This study provides the basis for developing a novel imaging/therapeutic reagent for targeting and treating brain tumor angiogenesis in early stages of tumorogenesis and can also be used as a molecular tool to monitor the degree of angiogenesis in gliomas which may help to improve the clinical management of brain tumors.

Page generated in 0.1157 seconds