1 |
Produção de fragmentos de anticorpos VHH contra toxinas de Bothrops jararacussu em biorreator por Escherichia coli HB 2151. / Production of VHH antibody fragments agianst Bothrops jararacussu toxins in a bioreactor by Escherichia coli HB 2151.Medeiros, Luan Merida de 26 June 2018 (has links)
Em caso de envenenamento ofídico, o tratamento no Brasil hoje é realizado pela administração de soros geralmente produzidos por equinos, que apresentam eficácia limitada: são úteis para os efeitos sistêmicos, mas não inibem efetivamente a evolução dos danos locais, podem causar reações adversas e apresentam alto custo de produção. De acordo com a Organização Mundial da Saúde (OMS), trata-se de uma doença negligenciada pelas autoridades científicas mundiais. O presente projeto, em parceria com o Instituto de Pesquisas em Patologias Tropicais da Fundação Oswaldo Cruz - Rondônia, propõe a produção por Escherichia coli de fragmentos de anticorpos de cadeia pesada de camelídeos, denominados VHH, contra as toxinas do veneno de Bothrops jararacussu, utilizando biorreator. Neste trabalho há interesse em produzir VHH, através da otimização do crescimento desta E. coli. A cinética do crescimento bacteriano foi realizada em shaker orbital sob diferentes condições, variando tamanho do frasco, rotação do shaker, composição do meio de cultura e concentração de substrato; e em biorreatores, alternando meios de cultura e modo de operação do reator (descontínuo e descontínuo alimentado), alterando a vazão de alimentação (linear e exponencial) O processo cinético é fortemente limitado pela formação de acetato, por condições auxotróficas da célula e pela transferência de oxigênio. Nos ensaios em frascos agitados, uma melhor condição de crescimento foi obtida utilizando frascos de 1 L, sob rotação a 270 rpm e 5,0 g/L de glicose. Nos ensaios em reator, quando operados em batelada obtiveram-se cerca 5,5 g/L de células finais, contra 9,3 g/L de células em batelada alimentada com vazão constante. Um maior crescimento foi ainda obtido em um reator de 2 L em regime de batelada alimentada exponencialmente. O biorreator varia a agitação do meio e mantém um nível pré-definido de oxigênio dissolvido, evitando a limitação de oxigênio e controlando a oferta de glicose para o crescimento celular. Neste processo, atingimos 25,6 g/L de células e 0,35 g/L de proteína total após purificação, utilizando meio M9 suplementado. / Nowadays in Brazil, the treatment for snakebite poisoning is carried out by the administration of horse sera, which have limited effectiveness: they are useful for systemic effects, but do not effectively inhibit local damage, cause adverse reactions, and present high production costs. According to the WHO, this disease is neglected by the world`s scientific authorities. This project, in partnership with the Institute for Research in Tropical Diseases of Oswaldo Cruz Foundation - Rondonia, proposes the production of heavy chain antibody fragments from camelids, called VHH, using Escherichia coli, to be used against the toxins from the Bothrops jararacussu poison, using a bioreactor. This work is interested in producing VHH through the use of E. coli. The kinetics of bacterial growth were performed in orbital shaker under different conditions, varying vial size, shaker rotation, composition of the culture medium and substrate concentration; and bioreactors, alternating culture media and operation mode of reactor (batch and fed-batch), changing feeding rate (linear and exponential). The kinetic process is statically bound to acetate formation, auxotrophic conditions of the cell and oxygen transfer. In assays in shaken flasks, an output of 270 rpm and 5.0 g/L of glucose. In reactor runs, when operated in a batch 5.5 g/L of final cells were obtained, against 9.3 g/L of final cells in fed-batch with constant flowrate. A larger value was obtained in an exponentially fed-batch reactor of 2 L. The bioreactor varies the agitation of oxygen and controls glucose addition for cell growth. In this process, 25.6 g/L cells and 0.35 g/L total protein after purification were reached, using supplemented M9 medium.
|
2 |
VHH Antibody Fragments Against Internalin B, a Virulence Factor of Listeria monocytogenes: Reagents for Biosensor DevelopmentGene, Robert 04 October 2012 (has links)
The food processing industry requires alternative methods for detecting the foodborne pathogen Listeria monocytogenes that are cheaper and faster than the current methods. Conventional antibodies and their fragments have been used as biorecognition elements in sensors before, but their use is hindered by high production cost and relative instability. These issues are resolved by VHH fragments, derived from the heavy chain-only antibodies found in Camelidae. VHHs are inexpensive to produce, and are more resistant to environmental stressors. This work describes the isolation of phage-displayed VHHs that recognize recombinant Internalin B, a virulence factor characteristic of L. monocytogenes. Clone R303 was chosen for further characterization, and shown to bind full-length Internalin B. Furthermore, immobilized R303 was shown to capture L. monocytogenes cells. This panel of VHHs, particularly R303, can be utilized by colleagues within the Sentinel Bioactive Paper Network to make a viable biosensor for L. monocytogenes. / Sentinel Bioactive Paper Network
|
3 |
Produção de fragmentos de anticorpos VHH contra toxinas de Bothrops jararacussu em biorreator por Escherichia coli HB 2151. / Production of VHH antibody fragments agianst Bothrops jararacussu toxins in a bioreactor by Escherichia coli HB 2151.Luan Merida de Medeiros 26 June 2018 (has links)
Em caso de envenenamento ofídico, o tratamento no Brasil hoje é realizado pela administração de soros geralmente produzidos por equinos, que apresentam eficácia limitada: são úteis para os efeitos sistêmicos, mas não inibem efetivamente a evolução dos danos locais, podem causar reações adversas e apresentam alto custo de produção. De acordo com a Organização Mundial da Saúde (OMS), trata-se de uma doença negligenciada pelas autoridades científicas mundiais. O presente projeto, em parceria com o Instituto de Pesquisas em Patologias Tropicais da Fundação Oswaldo Cruz - Rondônia, propõe a produção por Escherichia coli de fragmentos de anticorpos de cadeia pesada de camelídeos, denominados VHH, contra as toxinas do veneno de Bothrops jararacussu, utilizando biorreator. Neste trabalho há interesse em produzir VHH, através da otimização do crescimento desta E. coli. A cinética do crescimento bacteriano foi realizada em shaker orbital sob diferentes condições, variando tamanho do frasco, rotação do shaker, composição do meio de cultura e concentração de substrato; e em biorreatores, alternando meios de cultura e modo de operação do reator (descontínuo e descontínuo alimentado), alterando a vazão de alimentação (linear e exponencial) O processo cinético é fortemente limitado pela formação de acetato, por condições auxotróficas da célula e pela transferência de oxigênio. Nos ensaios em frascos agitados, uma melhor condição de crescimento foi obtida utilizando frascos de 1 L, sob rotação a 270 rpm e 5,0 g/L de glicose. Nos ensaios em reator, quando operados em batelada obtiveram-se cerca 5,5 g/L de células finais, contra 9,3 g/L de células em batelada alimentada com vazão constante. Um maior crescimento foi ainda obtido em um reator de 2 L em regime de batelada alimentada exponencialmente. O biorreator varia a agitação do meio e mantém um nível pré-definido de oxigênio dissolvido, evitando a limitação de oxigênio e controlando a oferta de glicose para o crescimento celular. Neste processo, atingimos 25,6 g/L de células e 0,35 g/L de proteína total após purificação, utilizando meio M9 suplementado. / Nowadays in Brazil, the treatment for snakebite poisoning is carried out by the administration of horse sera, which have limited effectiveness: they are useful for systemic effects, but do not effectively inhibit local damage, cause adverse reactions, and present high production costs. According to the WHO, this disease is neglected by the world`s scientific authorities. This project, in partnership with the Institute for Research in Tropical Diseases of Oswaldo Cruz Foundation - Rondonia, proposes the production of heavy chain antibody fragments from camelids, called VHH, using Escherichia coli, to be used against the toxins from the Bothrops jararacussu poison, using a bioreactor. This work is interested in producing VHH through the use of E. coli. The kinetics of bacterial growth were performed in orbital shaker under different conditions, varying vial size, shaker rotation, composition of the culture medium and substrate concentration; and bioreactors, alternating culture media and operation mode of reactor (batch and fed-batch), changing feeding rate (linear and exponential). The kinetic process is statically bound to acetate formation, auxotrophic conditions of the cell and oxygen transfer. In assays in shaken flasks, an output of 270 rpm and 5.0 g/L of glucose. In reactor runs, when operated in a batch 5.5 g/L of final cells were obtained, against 9.3 g/L of final cells in fed-batch with constant flowrate. A larger value was obtained in an exponentially fed-batch reactor of 2 L. The bioreactor varies the agitation of oxygen and controls glucose addition for cell growth. In this process, 25.6 g/L cells and 0.35 g/L total protein after purification were reached, using supplemented M9 medium.
|
4 |
Development of potential immunodiagnostic & therapeutic techniques using SNAP-fusion proteins as tools for the validation of Triple-negative Breast CancerMagugu, Freddy-Junior Siybaulela 04 February 2021 (has links)
Globally, breast cancer is the leading cause of death in the female population aged 45 and below with a breast cancer incidence reaching 18.1 million in the year 2018. Triple negative breast cancer (TNBC) is part of a group of cancers that lack the expression of Progesterone receptor (PR), Estrogen receptor (ER) and Human epidermal growth factor receptor 2 (HER2). TNBC is commonly associated with early stage metastasis with low survival rates as well as a high frequency of recurrence and proves to be problematic in both the young and elderly female populations. Conventional diagnostic methods for TNBCs include mammography, magnetic resonance imaging (MRI) and ultrasound while therapeutic methods include mastectomy and breast conserving surgery (coupled with radiation therapy). The lack of effective therapeutic options, poor prognostic value and high rates of metastasis, has made treatment of TNBC difficult. The major focus of this work was on the following tumour associated antigens (TAAs): CSPG4 (a transmembrane protein found in 50% of TNBC cases), EGFR (which is overexpressed in 13-76% of TNBCs), and MSLN (which is overexpressed in 67% of TNBCs) as potential targets for monospecific therapy. The evolution of antibody-based immunotherapy strategies has led to applications of single chain variable fragment (scFv) & single domain/nanobody (VHH) antibody formats for diagnostic and therapeutic purposes. In this work, these recombinant antibody fragments have been combined with SNAP-tag, a modified version of the human DNA repair enzyme O6-alkylguanine-DNA-alkyltransferase (AGT), which autocatalytically binds benzyl-guanine modified substrates such as fluorophores or small molecule toxins covalently in a 1:1 stoichiometry. In this study, the primary aim was the comparison of different antibody formats fused to SNAPtag and the potential of these biopharmaceuticals towards immunodiagnosis and therapy of TNBCs. First functionalities of two scFv SNAP fusion proteins and one VHH SNAP fusion protein previously not having been described are provided through binding analyses on receptor positive tumour cell lines. This was achieved by in-silico design and molecular cloning of genetically fused antiCSPG4(scFv), -MSLN(scFv), -MSLN(VHH), -EGFR(scFv) & -EGFR(VHH) to SNAP-tag. The final constructs were confirmed by Sanger sequencing and subsequently transfected into a mammalian vector system (HEK293T) for transient expression of the engineered fusion proteins. Full length protein purified from cell culture supernatant was analysed for diagnostic/therapeutic activities dependant on the substrate attached in the form of a fluorophore or small molecule toxin resulting in recombinant antibody-drug conjugates (ADCs). The study shows promise in providing new immunodiagnostic and therapeutic agents that are specific and less harmful than the current state of the art procedure
|
5 |
Etudes structurales de fragments d'anticorps d'intérêt thérapeutique et biotechnologique / Structural studies of antibodies fragments of therapeutic and biotechnological interestRoche, Jennifer 17 October 2017 (has links)
Les anticorps sont des molécules de reconnaissance du non-soi permettant de distinguer spécifiquement des marqueurs antigéniques appelés épitopes. Deux types d’anticorps ont été découverts jusqu’à présents : les anticorps « classiques » et les anticorps de camélidés, également appelés nanobody. Cette thèse porte sur des études structurales de fragments d’anticorps d’intérêt thérapeutique et biotechnologique. Au cours d’un premier volet, j’ai résolu la structure par cristallographie aux rayons X du fragment d’un anticorps d’intérêt thérapeutique, MIC12, à une résolution de 1,5 Å. Dans le but de résoudre la structure des complexes de MIC12 avec des protéines homologues du CMH de classe I, j’ai obtenu des cristaux diffractant à une résolution allant jusqu’à 7 Å. En parallèle, des analyses par diffusion de rayons X aux petits angles (SAXS) combinées à des prédictions d’interaction par docking ont été conduites afin d’obtenir une première description de la région globale d’interaction de MIC12 sur l’une de ses cibles. Concernant le second volet, 4 nanobody ont été obtenus contre la protéine périplasmique PorM (pPorM) du système de sécrétion de type 9 de Porphyromonas gingivalis. J’ai résolu la structure par cristallographie du nanobody nb02, à une résolution de 1,5 Å. Leur utilisation comme chaperonne de cristallisation m’a permis de résoudre la structure de la partie N-terminale de pPorM. J’ai également mené une étude par SAXS de la protéine pPorM entière. L’ensemble des résultats que j’ai obtenu par cristallographie et par SAXS, combinés aux résolutions des structures des autres domaines de pPorM, ont permis de proposer un modèle structural de la protéine pPorM entière. / Antibodies are non-self recognition molecules wich help to specifically distinguish antigenic markers called epitopes. Two types of antibody were discovered so far: “classic” antibodies and camelid antibodies, also called nanobodies. This PhD deals with structural studies of antibodies fragments of therapeutic and biotechnological interest. During the first part, I solved the structure of the therapeutic antibody targeting homologous proteins of the MHC class I, MIC12, using X-ray crystallography at a resolution of 1.5 Å. In order to solve the structure of the complexes of MIC12 with its MIC antigens, I obtained crystals of the complexes diffracting at a resolution of up to 7 Å. In parallel, analyses by Small Angles X-ray Scattering (SAXS) combined with in silico docking predictions were led to obtain a first description of the global binding region of MIC12 on one of its targets. Concerning the second part, 4 nanobodies were obtained against the periplasmic protein PorM (pPorM) of the secretion system type 9 from Porphyromonas gingivalis. I solve the structure of the nanobody nb02, at a resolution of 1.5 Å. Their use as chaperones of crystallization helped me to solve the structure of the N-terminal part of pPorM. I also conducted a study by SAXS of the whole pPorM protein. All these results, obtained by crystallography and SAXS studies, combined with the solving of the structures of the other domains of pPorM, made it possible to propose a structural model of the entire pPorM protein.
|
6 |
Développement et évaluation d'agents de contraste pour détecter la maladie d'Alzheimer par IRM : coloration par le Gadolinium et nanocorps ciblant les protéines Aβ et Tau / Development and Evaluation of Contrast Agents to Detect Alzheimer's Disease by MRI : Gadolinium Staining and Nanobodies Targeting Amyloid β and Tau ProteinsDudeffant, Clémence 01 October 2018 (has links)
L’imagerie par résonnance magnétique (IRM) est devenue un outil incontournable en recherche biomédicale. Le développement d’outils de neuroimagerie pour le petit animal est primordial pour valider des hypothèses biologiques et tester l’efficacité de nouvelles thérapies. Dans le contexte de la maladie d’Alzheimer (MA), l’utilisation d’IRM à haut champ magnétique permet l’imagerie des plaques amyloïdes, signature moléculaire de cette pathologie. Cependant, seule une faible proportion de ces lésions sont détectées et aucune méthode de neuroimagerie ne permet actuellement d’imager les dégénérescences neurofibrillaires, deuxième signature microscopique de la MA. Dans cette thèse, deux méthodes complémentaires, utilisant différents agents de contraste à base de Gadolinium (Gd), ont été étudiées pour améliorer la détection des plaques amyloïdes par IRM. La première partie de cette thèse s’est intéressée à la méthode du « Gd- staining ». Une étude comparative réalisée sur différents modèles murins d’amyloïdose et sur des primates non-humains, a permis de mieux comprendre les mécanismes impliqués dans la détection des plaques amyloïdes grâce à cette technique. Également, nous avons montré pour la première fois qu’il est possible d’imager les lésions Aβ humaines, en post mortem, par Gadolinium-staining. La deuxième partie de cette thèse s’est intéressée au développement d’agents de contraste vectorisés, ciblant spécifiquement les lésions de la MA. Ces molécules seraient capables de traverser spontanément la barrière hémato-encéphalique, principale limite au développement de molécules à visée cérébrale, et permettraient de cibler spécifiquement les deux lésions caractéristiques de la MA. Ces propriétés font de ces molécules de outils potentiels intéressants pour l’imagerie cérébrale de la MA. / Magnetic resonance imaging (MRI) has become a key tool for both clinical and preclinical research. Developing innovative neuroimaging techniques specifically designed for small animal models is therefore crucial to validate biological hypotheses and screen new drugs. Amyloid plaques and neurofibrillary tangles are the major lesions characterizing Alzheimer’s disease (AD) and intensive research has been carried out in order to enable the accurate detection of amyloid plaques using high-field MRI. However, only a small portion of plaques are spontaneously detected by MRI and no method is so far available for neurofibrillary tangles imaging. Here, we develop two contrast-enhanced MRI techniques to improve amyloid plaques detection using high-field MRI. The first part of this work focuses on Gadolinium-Staining for amyloid plaques detection by MRI. We performed a comparative study between mice model of amyloi-dosis and non-human primate models, which al-lowed us to gain a better understanding of the origin of the contrast induced by amyloid plaques when performing contrast-enhanced MRI. We also showed for the first time that Gd-stained MRI is able to detect amyloid plaques in human-AD brain tis-sues. The second part of this manuscript describes two novel single-domain antibodies (VHHs or nano-bodies) that are able to specifically recognize and bind amyloid plaques or neurofibrillary tangles. The detection of intracerebral targets with imaging probes is challenging due to the non-permissive nature of the blood-brain barrier. Interestingly, VHH exhibiting a basic isoelectric point are able to transmigrate across the blood-brain barrier, thus making them promising tools for in vivo imaging of AD’s lesion at high-field MR.
|
7 |
Expression of Biotinylated Multivalent Peptide Antigens in Bacteria for Rapid and Effective Generation of Single Domain Antibodies from Phage-displayed Antibody LibrariesAlturki, Norah 19 November 2012 (has links)
In the present study, two insulin-like growth factor-binding protein 7 (IGFBP7) C-terminal-peptides were expressed as fusion proteins to bacterial verotoxin pentamerization domain as shown by Western blotting, ELISA and mass spectroscopy. Both in vivo-biotinylated recombinant products were purified from bacterial lysates by IMAC and used directly for panning along with the recombinant IGFBP7 protein using the LAC-M Camelidae naïve single domain antibody (sdAb) library. Target-specific sdAbs to both parental protein and peptide fusions were identified by phage ELISA. Twelve different clones were isolated by phage-ELISA screening and their sdAb genes were sequenced. Soluble sdAbs and their pentameric formats were expressed in TG1 E. coli, purified by IMAC and characterized by ELISA and SPR. Several sdAbs are currently under study, however anti-IGFBP7 (P12/M12) was extensively characterized and exhibited promising anti-tumorigenic effect on PANC-1 cell lines by blocking IGFBP7 promoting activity. This study provides the basis for developing a novel imaging/therapeutic reagent for targeting and treating brain tumor angiogenesis in early stages of tumorogenesis and can also be used as a molecular tool to monitor the degree of angiogenesis in gliomas which may help to improve the clinical management of brain tumors.
|
8 |
Development of Nanobodies to Image Synaptic Proteins in Super-Resolution MicroscopyMaidorn, Manuel 15 November 2017 (has links)
No description available.
|
9 |
Expression of Biotinylated Multivalent Peptide Antigens in Bacteria for Rapid and Effective Generation of Single Domain Antibodies from Phage-displayed Antibody LibrariesAlturki, Norah January 2012 (has links)
In the present study, two insulin-like growth factor-binding protein 7 (IGFBP7) C-terminal-peptides were expressed as fusion proteins to bacterial verotoxin pentamerization domain as shown by Western blotting, ELISA and mass spectroscopy. Both in vivo-biotinylated recombinant products were purified from bacterial lysates by IMAC and used directly for panning along with the recombinant IGFBP7 protein using the LAC-M Camelidae naïve single domain antibody (sdAb) library. Target-specific sdAbs to both parental protein and peptide fusions were identified by phage ELISA. Twelve different clones were isolated by phage-ELISA screening and their sdAb genes were sequenced. Soluble sdAbs and their pentameric formats were expressed in TG1 E. coli, purified by IMAC and characterized by ELISA and SPR. Several sdAbs are currently under study, however anti-IGFBP7 (P12/M12) was extensively characterized and exhibited promising anti-tumorigenic effect on PANC-1 cell lines by blocking IGFBP7 promoting activity. This study provides the basis for developing a novel imaging/therapeutic reagent for targeting and treating brain tumor angiogenesis in early stages of tumorogenesis and can also be used as a molecular tool to monitor the degree of angiogenesis in gliomas which may help to improve the clinical management of brain tumors.
|
10 |
Programmed cell-immobilization of living cells by independent molecular interaction / 細胞膜へのクリック反応性官能基修飾の生細胞配置固定への応用Zhu, Chengyuan 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(薬科学) / 甲第25225号 / 薬科博第187号 / 新制||薬科||21(附属図書館) / 京都大学大学院薬学研究科薬科学専攻 / (主査)教授 樋口 ゆり子, 教授 二木 史朗, 教授 小野 正博 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
Page generated in 0.0238 seconds