Spelling suggestions: "subject:"bisection"" "subject:"bisected""
1 |
A Variety of Proofs of the Steiner-Lehmus TheoremGardner, Sherri R 01 May 2013 (has links) (PDF)
The Steiner-Lehmus Theorem has garnered much attention since its conception in the 1840s. A variety of proofs resulting from the posing of the theorem are still appearing today, well over 100 years later. There are some amazing similarities among these proofs, as different as they seem to be. These characteristics allow for some interesting groupings and observations.
|
2 |
As construções geométricas e a gênese instrumental: o caso da mediatrizJesus, Gilson Bispo de 05 October 2012 (has links)
Made available in DSpace on 2016-04-27T16:57:20Z (GMT). No. of bitstreams: 1
Gilson Bispo de Jesus.pdf: 2003628 bytes, checksum: b76e6d0b8ebbf82f910e9ece19c3d41a (MD5)
Previous issue date: 2012-10-05 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This thesis deals with the Instrumental Genesis, which is the preparation process
of instrument by the subject. Studies on national and international levels have
addressed this process, however, no studies that dealt with Instrumental Genesis
referring to an abstract artifact were found. This research revealed the bisector as
an abstract artifact. Thus, the goals were to analyze based on the actions of two
teachers as the bisector artifact becomes an instrument to solve geometric
problems, and investigate how this process could contribute to the learning of
geometry by these teachers. Based on these objectives, the research conducted
answered the following research questions: how the bisector of Instrumental
Genesis happens when the subject interacts with this mathematical object to solve
a geometric problem? How the insertion of a bisector mathematical object may
interfere in the geometric content learning process by the subject? The
methodological choice was the case study that contributed to the achievement of
research objectives and the studies those carried out regarding Theory of
Instrumentation and Anthropological Theory of Didactics which provided the
theoretical elements appropriate for this research. The task, techniques and
theoretical-technological discourse analysis enabled to perceive the various
instruments developed by teachers while they organized their actions.
Furthermore, the didactic organization enabled teachers to develop different
techniques supported in the theoretical-technological discourse by solving
geometric construction tasks proposed in this organization. The process of
Instrumental Genesis of bisector was found in the teachers actions, since these
actions emphasized the mobilization and/or construction of various use schemes
that were added to this mathematical object. At the same time, this process
contributed to the learning mediated by bisector of some topics of Plane
Geometry / Esta tese trata da Gênese Instrumental, que consiste no processo de elaboração
do instrumento pelo sujeito. Estudos em níveis nacionais e internacionais já
abordaram esse processo; no entanto, não foram encontrados trabalhos que
tratassem da Gênese Instrumental, tomando como referência um artefato
abstrato. Nesta pesquisa, evidenciou-se a mediatriz como artefato desse tipo.
Assim, seus objetivos foram analisar com base nas ações de dois professores,
como o artefato mediatriz transforma-se em instrumento na resolução de
problemas geométricos e investigar como esse processo poderia contribuir para a
aprendizagem de conteúdos geométricos por parte desses professores. Com
base nesses objetivos, a pesquisa realizada respondeu às seguintes questões de
investigação: de que modo acontece a Gênese Instrumental da mediatriz, quando
o sujeito interage com esse objeto matemático na resolução de problemas
geométricos? Como a inserção do objeto matemático mediatriz interfere no
processo de aprendizagem de conteúdos geométricos por parte do sujeito? A
escolha metodológica foi o estudo de caso que contribuiu para o alcance dos
objetivos da pesquisa e os estudos realizados a respeito da Teoria da
Instrumentação e da Teoria Antropológica do Didático forneceram os elementos
teóricos apropriados para esta pesquisa. A análise das tarefas, das técnicas e do
discurso tecnológico-teórico fez perceber os vários instrumentos elaborados pelos
professores, quando eles organizavam suas ações. Além disso, a organização
didática favoreceu que os professores desenvolvessem técnicas diferentes
apoiadas no discurso tecnológico-teórico, ao solucionarem as tarefas de
construção geométrica propostas nessa organização. Constatou-se, nas ações
dos professores, o processo de Gênese Instrumental da mediatriz, visto que
essas ações evidenciaram a mobilização e/ou a construção de vários esquemas
de utilização que foram agregados a este objeto matemático. Ao mesmo tempo,
esse processo contribuiu para a aprendizagem mediada pela mediatriz de alguns
tópicos de Geometria Plana
|
3 |
An Invitation to Generalized Minkowski GeometryJahn, Thomas 11 March 2019 (has links)
The present thesis contributes to the theory of generalized Minkowski spaces as a continuation of Minkowski geometry, i.e., the geometry of finite-dimensional normed spaces over the field of real numbers.
In a generalized Minkowski space, distance and length measurement is provided by a gauge, whose definition mimics the definition of a norm but lacks the symmetry requirement.
This seemingly minor change in the definition is deliberately chosen.
On the one hand, many techniques from Minkowski spaces can be adapted to generalized Minkowski spaces because several phenomena in Minkowski geometry simply do not depend on the symmetry of distance measurement.
On the other hand, the possible asymmetry of the distance measurement set up by gauges is nonetheless meaningful and interesting for applications, e.g., in location science.
In this spirit, the presentation of this thesis is led mainly by minimization problems from convex optimization and location science which are appealing to convex geometers, too.
In addition, we study metrically defined objects, which may receive a new interpretation when we measure distances asymmetrically.
To this end, we use a combination of methods from convex analysis and convex geometry to relate the properties of these objects to the shape of the unit ball of the generalized Minkowski space under consideration.
|
4 |
Trigonometry: Applications of Laws of Sines and CosinesSu, Yen-hao 02 July 2010 (has links)
Chapter 1 presents the definitions and basic properties of trigonometric functions including: Sum Identities, Difference Identities, Product-Sum Identities and Sum-Product Identities. These formulas provide effective tools to solve the problems in trigonometry.
Chapter 2 handles the most important two theorems in trigonometry: The laws of sines and cosines and show how they can be applied to derive many well known theorems including: Ptolemy¡¦s theorem, Euler Triangle Formula, Ceva¡¦s theorem, Menelaus¡¦s Theorem, Parallelogram Law, Stewart¡¦s theorem and Brahmagupta¡¦s Formula. Moreover, the formulas of computing a triangle area like Heron¡¦s formula and Pick¡¦s theorem are also discussed.
Chapter 3 deals with the method of superposition, inverse trigonometric functions, polar forms and De Moivre¡¦s Theorem.
|
Page generated in 0.0456 seconds