1 |
ARCHITECTURAL CONSIDERATIONS FOR A VARIABLE BIT RATE DATA ACQUISITION TELEMETRY ENCODERLee, Jeffrey C. 10 1900 (has links)
ITC/USA 2007 Conference Proceedings / The Forty-Third Annual International Telemetering Conference and Technical Exhibition / October 22-25, 2007 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Modern telemetry systems require flexible bit rate telemetry encoders in order to optimize mission formats for varying data rate requirements and/or signal to noise conditions given a fixed transmitter power. Implementing a variable bit rate telemetry encoder requires consideration of several possible architectural topologies that place different system requirements on data acquisition modules within the encoder in order to maintain adequate signal fidelity of sensor information. This paper focuses on the requirements, design considerations and tradeoffs associated with differing architectural topologies for implementing a variable bit rate encoder and the resulting implications on the encoder systems data acquisition units.
|
2 |
TRACKING RECEIVER NOISE BANDWIDTH SELECTIONPedroza, Moises 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / The selection of the Intermediate Frequency (IF) bandwidth filter for a data receiver for
processing PCM data is based on using a peak deviation of 0.35 times the bit rate. The
optimum IF bandwidth filter is equal to the bit rate. An IF bandwidth filter of 1.5 times the
bit rate degrades the data by approximately 0.7 dB. The selection of the IF bandwidth
filter for tracking receivers is based on the narrowest “noise bandwidth” that will yield the
best system sensitivity. In some cases the noise bandwidth of the tracking receiver is the
same as the IF bandwidth of the data receiver because it is the same receiver. If this is the
case, the PCM bit rate determines the IF bandwidth and establishes the system sensitivity.
With increasing bit rates and increased transmitter stability characteristics, the IF
bandwidth filter selection criteria for a tracking receiver must include system sensitivity
considerations. The tracking receiver IF bandwidth filter selection criteria should also be
based on the narrowest IF bandwidth that will not cause the tracking errors to be masked
by high bit rates and alter the pedestal dynamic response.
This paper describes a selection criteria for a tracking receiver IF bandwidth filter based
on measurements of the tracking error signals versus antenna pedestal dynamic response.
Different IF bandwidth filters for low and high bit rates were used.
|
3 |
ANTENNA PATTERN EVALUATION FOR LINK ANALYSISPedroza, Moises 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / The use of high bit rates in the missile testing environment requires that the receiving
telemetry system(s) have the correct signal margin for no PCM bit errors. This requirement
plus the fact that the use of “redundant systems” are no longer considered optimum
support scenarios has made it necessary to select the minimum number of tracking sites
that will gather the data with the required signal margin. A very basic link analysis can be
made by using the maximum and minimum gain values from the transmitting antenna
pattern. Another way of evaluating the transmitting antenna gain is to base the gain on the
highest percentile appearance of the highest gain value.
This paper discusses the mathematical analysis the WSMR Telemetry Branch uses to
determine the signal margin resulting from a radiating source along a nominal trajectory.
The mathematical analysis calculates the missile aspect angles (Theta, Phi, and Alpha) to
the telemetry tracking system that yields the transmitting antenna gain. The gain is
obtained from the Antenna Radiation Distribution Table (ARDT) that is stored in a
computer file. An entire trajectory can be evaluated for signal margin before an actual
flight. The expected signal strength level can be compared to the actual signal strength
level from the flight. This information can be used to evaluate any plume effects.
|
4 |
Étude des potentialités offertes par les technologies de transmission optique flexible pour les réseaux métro / coeur / Study of the potentialities offered by the flexible optical transmission technologies for metro and core networksBlouza, Sofiene 16 May 2013 (has links)
L'évolution vers de nouveaux services, comme la TV à la demande, nécessitant de grosses bandes passantes remet en question les débits transportés par chaque canal optique d'un réseau WDM. Les débits des canaux ont atteint aujourd'hui les 100 Gbit/s. Cette montée en débit doit être accompagnée par de nouvelles fonctionnalités au sein des réseaux de transport optiques. Améliorer la flexibilité et assurer la transparence des réseaux optiques sont des défis très importants auxquels les opérateurs doivent faire face aujourd'hui. Un réseau optique est dit transparent, si les signaux optiques transportés ne subissent aucune conversion optoélectronique sauf au moment de leur insertion et de leur extraction dans le réseau optique. La flexibilité, quant à elle, concerne principalement les fonctions d'agrégation et de désagrégation optiques. Aujourd'hui ces fonctions d'agrégation et de désagrégation sont réalisées dans le domaine électronique, ce qui avec la montée du débit, va engendrer un coût important pour les opérateurs. Une manière d'y remédier serait de trouver une technologie adaptée à la montée du débit et offrant la possibilité de faire de l'agrégation et de la désagrégation optique des flux de trafics. Dans cette thèse nous proposons d'étudier une technique de commutation tout-optique offrant la possibilité de faire de la commutation optique intra-canal. Cette technique, baptisée multi-bande OFDM, consiste à diviser un canal WDM en plusieurs entités appelées sous-bandes. Le nombre de ces entités dépend des contraintes technologiques des équipements utilisés pour générer le canal multi-bande (les filtres optiques, les convertisseurs analogiques/numérique et numériques/analogiques). Nous comparons la technologie multi-bande OFDM par rapport à des technologies tendancielles mono-bande : le cas mono-bande opaque et mono-bande transparent. Nous démontrons que la technologie multi-bande OFDM peut être un compromis entre ces deux technologies pour les futurs réseaux de télécommunications optiques. Pour ce faire, nous calculons les performances en termes de blocage. Nous étudions l'impact de la conversion de longueurs d'onde sur les réseaux multi-bande OFDM ainsi que l'impact d'augmenter les nombres de sous-bandes sur les performances du réseau. Nous dégageons les limites technologiques de cette approche. Dans une autre partie de l'étude, nous montrons l'intérêt économique de la technologie multi-bande OFDM. Nous exposons le gain en coût des émetteurs/récepteurs obtenu grâce au déploiement de la technologie multi-bande OFDM sur un réseau cœur et un réseau métropolitain. / The evolution of new telecommunication services, which requires large bandwidth, challenges bit-rates transported by each optical channel of a WDM network. Bit-rates of optical channels have now reached 100 Gbit/s. This increase in bit-rate must be supported by new features in optical network. Improve flexibility and ensure transparency of optical network, are very important challenges that telecom operators face today. An optical network is called transparent, if the transported optical signals are not converted in electrical domain except at the time of their insertion and extraction in/from the optical network. Flexibility concerns mainly the aggregation / disaggregation processes. Today, the functions of aggregation/disaggregation are made on the electrical domain. This generates a significant cost for operators. One way to avoid this would be to find a technology which offers high bit-rates and enable the aggregation and disaggregation functions in the optical domain. In this thesis, we propose to study all-optical switching technology at the sub-wavelength granularity. This technique, called multi-band OFDM, consists in dividing a WDM channel into multiple entities, called sub-bands. The number of sub-bands depends on the technological constraints of optical components used to transport the optical signal (optical filters, digital analogical converters, analogical digital converters, optical transponders, optical multiplexers, etc.). We compare the multi-band OFDM technology to two legacies scenarios: mono-band opaque and mono-band transparent WDM technologies. We demonstrate that the multi-band OFDM technology can be a trade-off between these two legacies scenarios. To do that, we studied the performance in terms of blocking ratio of the multi-band OFDM technology and mono-bands WDM technologies. We study the impact of increasing the number of sub-bands on network performances. We also investigate the technical limits of this technology. Moreover, we demonstrate the economic interest of the multi-band OFDM. We expose the gain on the number of transponders when the multi-band OFDM technology is deployed on metro and core network.
|
Page generated in 0.0516 seconds