• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Risk-Taking Characteristics as Explanatory Variables in Variations of Fatality Rates in the Southeastern United States

Godfrey, Jodi Anne 20 March 2015 (has links)
Traffic fatalities accounted for 1.24 million lives lost in 2013 worldwide, and almost 33 thousand of those fatalities were in the U.S. in 2013. The southeastern region of the nation stands out for continuously having higher fatality rates per mile driven than the national average. If one can establish compelling relationships between various factors and fatality rates, then policies and investments can be targeted to increase the safety on the network by focusing on policies that mitigate those factors. In this research effort risk-taking characteristics are explored. These factors have not been as comprehensively reviewed as conventional factors such as vehicle and facility conditions associated with safety. The hypothesis assumes if a person exhibits risk-taking behavior, that risk-taking behavior is not limited to only one aspect of risk, but is likely to occur in multiple facets of the person's life. Some of the risk-taking characteristics explored include credit score, safety belt use, smoking and tobacco use, drug use, mental health, educational attainment, obesity, and overall general health characteristics. All risk-taking characteristics with the exception of mental health were found to have statistically significant correlations with fatality rates alone. However, when a regression model was formed to estimate fatality rates by risk-taking characteristics, only four risk-taking characteristics - credit score, educational attainment, overall poor health, and seat belt use were found to be statistically significant at an integrated level with other demographic characteristics such as unemployment levels and population born is state of residency. By identifying at-risk population segments, education, counseling, enforcement, or other strategies may be deployed to help improve travel safety.
2

'Correlation and portfolio analysis of financial contagion and capital flight'

NAKMAI, SIWAT 29 November 2018 (has links)
This dissertation mainly studies correlation and then portfolio analysis of financial contagion and capital flight, focusing on currency co-movements around the political uncertainty due to the Brexit referendum on 26 June 2016. The correlation, mean, and covariance computations in the analysis are both time-unconditional and time-conditional, and the generalized autoregressive conditional heteroskedasticity (GARCH) and exponentially weighted moving average (EWMA) methods are applied. The correlation analysis in this dissertation (Chapter 1) extends the previous literature on contagion testing based on a single global factor model, bivariate correlation analysis, and heteroskedasticity bias correction. Chapter 1 proposes an alternatively extended framework, assuming that intensification of financial correlations in a state of distress could coincide with rising global-factor-loading variability, provides simple tests to verify the assumptions of the literature and of the extended framework, and considers capital flight other than merely financial contagion. The outcomes show that, compared to the literature, the extended framework can be deemed more verified to the Brexit case. Empirically, with the UK being the shock-originating economy and the sterling value plummeting on the US dollar, there exist contagions to some other major currencies as well as a flight to quality, particularly to the yen, probably suggesting diversification benefits. When the correlation coefficients are time-conditional, or depend more on more recent data, the evidence shows fewer contagions and flights since the political uncertainty in question disappeared gradually over time. After relevant interest rates were partialled out, some previous statistical contagion and flight occurrences became less significant or even insignificant, possibly due to the significant impacts of the interest rates on the corresponding currency correlations. The portfolio analysis in this dissertation (Chapter 2) examines financial contagion and capital flight implied by portfolio reallocations through mean-variance portfolio analysis, and builds on the correlation analysis in Chapter 1. In the correlation analysis, correlations are bivariate, whereas in the portfolio analysis they are multivariate and the risk-return tradeoff is also vitally involved. Portfolio risk minimization and reward-to-risk maximization are the two analytical cases of portfolio optimality taken into consideration. Robust portfolio optimizations, using shrinkage estimations and newly proposed risk-based weight constraints, are also applied. The evidence demonstrates that the portfolio analysis outcomes regarding currency contagions and flights, implying diversification benefits, vary and are noticeably dissimilar from the correlation analysis outcomes of Chapter 1. Subsequently, it could be inferred that the diversification benefits deduced from the portfolio and correlation analyses differ owing to the dominance, during market uncertainty, of the behaviors of the means and (co)variances of all the shock-originating and shock-receiving returns, over the behaviors of just bivariate correlations between the shock-originating and shock-receiving returns. Moreover, corrections of the heteroskedasticity bias inherent in the shock-originating returns, overall, do not have an effect on currency portfolio rebalancing. Additionally, hedging demands could be implied from detected structural portfolio reallocations, probably as a result of variance-covariance shocks rising from Brexit. / This dissertation mainly studies correlation and then portfolio analysis of financial contagion and capital flight, focusing on currency co-movements around the political uncertainty due to the Brexit referendum on 26 June 2016. The correlation, mean, and covariance computations in the analysis are both time-unconditional and time-conditional, and the generalized autoregressive conditional heteroskedasticity (GARCH) and exponentially weighted moving average (EWMA) methods are applied. The correlation analysis in this dissertation (Chapter 1) extends the previous literature on contagion testing based on a single global factor model, bivariate correlation analysis, and heteroskedasticity bias correction. Chapter 1 proposes an alternatively extended framework, assuming that intensification of financial correlations in a state of distress could coincide with rising global-factor-loading variability, provides simple tests to verify the assumptions of the literature and of the extended framework, and considers capital flight other than merely financial contagion. The outcomes show that, compared to the literature, the extended framework can be deemed more verified to the Brexit case. Empirically, with the UK being the shock-originating economy and the sterling value plummeting on the US dollar, there exist contagions to some other major currencies as well as a flight to quality, particularly to the yen, probably suggesting diversification benefits. When the correlation coefficients are time-conditional, or depend more on more recent data, the evidence shows fewer contagions and flights since the political uncertainty in question disappeared gradually over time. After relevant interest rates were partialled out, some previous statistical contagion and flight occurrences became less significant or even insignificant, possibly due to the significant impacts of the interest rates on the corresponding currency correlations. The portfolio analysis in this dissertation (Chapter 2) examines financial contagion and capital flight implied by portfolio reallocations through mean-variance portfolio analysis, and builds on the correlation analysis in Chapter 1. In the correlation analysis, correlations are bivariate, whereas in the portfolio analysis they are multivariate and the risk-return tradeoff is also vitally involved. Portfolio risk minimization and reward-to-risk maximization are the two analytical cases of portfolio optimality taken into consideration. Robust portfolio optimizations, using shrinkage estimations and newly proposed risk-based weight constraints, are also applied. The evidence demonstrates that the portfolio analysis outcomes regarding currency contagions and flights, implying diversification benefits, vary and are noticeably dissimilar from the correlation analysis outcomes of Chapter 1. Subsequently, it could be inferred that the diversification benefits deduced from the portfolio and correlation analyses differ owing to the dominance, during market uncertainty, of the behaviors of the means and (co)variances of all the shock-originating and shock-receiving returns, over the behaviors of just bivariate correlations between the shock-originating and shock-receiving returns. Moreover, corrections of the heteroskedasticity bias inherent in the shock-originating returns, overall, do not have an effect on currency portfolio rebalancing. Additionally, hedging demands could be implied from detected structural portfolio reallocations, probably as a result of variance-covariance shocks rising from Brexit.

Page generated in 0.167 seconds