• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 51
  • 47
  • 39
  • 26
  • 14
  • 9
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 473
  • 184
  • 111
  • 79
  • 62
  • 53
  • 52
  • 49
  • 42
  • 40
  • 37
  • 36
  • 36
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Effects of Inlet Guide Vane Flow Control on Forced Response of a Transonic Fan

Bailie, Samuel Todd 20 November 2003 (has links)
The main contributor to the high-cycle fatigue of compressor blades is the response to aerodynamic forcing functions generated by an upstream row of stators or inlet guide vanes. Resonant response to engine order excitation at certain rotor speeds is especially damaging. Studies have shown that flow control by trailing edge blowing (TEB) can reduce stator wake strength and the amplitude of the downstream rotor blade vibrations generated by the unsteady stator-rotor interaction. In the present study, the effectiveness of TEB to reduce forced blade vibrations was evaluated in a modern single-stage transonic compressor rig. A row of wake generator (WG) vanes with TEB capability was installed upstream of the fan blisk, the blades of which were instrumented with strain gages. Data was collected for varied TEB conditions over a range of rotor speed which included one fundamental and multiple harmonic resonance crossings. Sensitivity of resonant response amplitude to full-span TEB flowrate, as well as optimal TEB flowrates, are documented for multiple modes. Resonant response sensitivity was generally characterized by a robust region of substantial attenuation, such that less-than-optimal TEB flowrates could prove to be an appropriate design tradeoff. The fundamental crossing amplitude of the first torsion mode was reduced by as much as 85% with full-span TEB at 1.1% of the total rig inlet flow. Similar reductions were achieved for the various harmonic crossings, including as much as 94% reduction of the second leading edge bending mode resonant response using 0.74% of the rig flow for full-span TEB. At least 32% reduction was achieved for all modal crossings over the broad flow range of 0.5 to 0.9% of the rig flow. Thus the results demonstrate the modal- and flowrate-robustness of full-span TEB for reducing forced response in a modern, closely-spaced transonic compressor. Reduced spanwise TEB coverage was generally found to provide less peak reduction. Widely varying sensitivities of the vibration modes to the spanwise TEB distribution were also noted. While the second chordwise mode experienced roughly the same maximum response reduction of 80% for all of the spanwise TEB configurations, some other modes were amplified from the baseline case under part-span TEB conditions. Part-span TEB was thus found to be less modally-robust than full-span TEB. / Ph. D.
252

Effects of stationary wake on turbine blade heat transfer in a transonic cascade

Hale, Jamie Harold 22 August 2008 (has links)
The effects of a wake generated by a stationary upstream strut on surface heat transfer to turbine blades were measured experimentally. Time-resolved and unsteady heat flux measurements were made with Heat Flux Microsensors (HFM) at three positions on the suction surface and one position on the pressure surface of a turbine blade. The experiments were conducted on a stationary cascade of blades for heated runs at transonic conditions Methods for determining the adiabatic wall temperature and heat transfer coefficient are presented and the results are compared to computer predictions for these blades. Heat transfer measurements were taken with new HFM-6 insert gages. A strong influence on the heat transfer coefficient was seen from the relative position of the strut with respect to the leading edge of the test blades. As the strut approached the leading edge of the blade the heat transfer increased by 15% at gage location 2 on the suction surface. The largest increase in .the heat transfer coefficient was seen on the pressure surface. Results at this location show a 24% increase in the overall heat transfer coefficient for one of the strut locations. The values obtained for the heat transfer coefficients for the no strut case did not compare well with computer predictions. The results did support the experimental results of other researchers, however. The fast time response of the HFM illustrated graphically an increase in the frequency energy between the 0-10 kHz range when the strut was located near the leading edge of the instrumented blade. The heat flux turbulence intensity (Tuq) was defined as another physical quantity important to turbine blade heat transfer, but no conclusions could be drawn from the results as to how this value compares to the turbulence intensity. / Master of Science
253

Film Cooling Predictions Along the Tip and Platform of a Turbine Blade

Hohlfeld, Erik Max 11 June 2003 (has links)
Turbine airfoils are exposed to the hottest temperatures in the gas turbine with temperatures typically exceeding the melting point of the blade material. Cooling methods investigated in this computational study included parasitic cooling flow losses, which are inherent to engines, and microcircuit channels. Parasitic losses included dirt purge holes, located along the blade tip, and platform leakage flow, which result from gaps between various turbine components. Microcircuits are a novel cooling technique involving small air passages placed near the airfoil surface to enhance internal cooling. This study evaluated the benefit of external film-cooling flow exhausted from strategically placed microcircuits. Along the blade tip, predictions showed mid-chord cooling was independent of the blowing from microcircuit exits. The formation of a pressure side vortex was found to develop for most microcircuit film-cooling cases. Significant leading edge cooling was obtained from coolant exiting from dirt purge holes with a small tip gap while little cooling was seen with a large tip gap. Along the blade platform, the migration of coolant from the front leakage was shown to cool a considerable part of the platform. Several hot spots were predicted along the platform, which were circumvented through the placement of microcircuit channels. Ingestion of hot mainstream gas was predicted along the aft portion of the gutter and agreed with distress exhibited by actual gas turbine engines. / Master of Science
254

Application of the Filtered-X LMS Algorithm for Disturbance Rejection in Time-Periodic Systems

Fowler, Leslie Paige 03 May 1996 (has links)
Extensive disturbance rejection methods have been established for time-invariant systems. However, the development of these techniques has not focused on application to time-periodic systems in particular until recently. The filtered-X LMS algorithm is regarded as the best disturbance rejection technique for aperiodic systems by many, as has been proven in the acoustics industry for rejecting unwanted noise. Since this is essentially a feedforward approach, we might expect its performance to be good with respect to time-periodic systems in which the disturbance frequency is already known. The work presented in this thesis is an investigation of the performance of the filtered-X LMS algorithm for disturbance rejection in time-periodic systems. Two cases are examined: a generalized linear, time-periodic system and the helicopter rotor blade in forward flight. Results for the generalized system show that the filtered-X LMS algorithm does converge for time-periodic disturbance inputs and can produce very small errors. For the helicopter rotor blade system the algorithm is shown to produce very small errors, with a 96%, or 14 dB, reduction in error from the open-loop system. The filtered-X LMS disturbance rejection technique is shown to provide a successful means of rejecting timeperiodic disturbances for time-periodic systems. / Master of Science
255

Wall Modeled Large-Eddy Simulations in Rotating Systems for Applications to Turbine Blade Internal Cooling

Song, Keun Min 16 February 2012 (has links)
Large-Eddy Simulations (LES or wall-resolved LES, WRLES) has been used extensively in capturing the physics of anisotropic turbulent flows. However, near wall turbulent scales in the inner layer in wall bounded flows makes it unfeasible for large Reynolds numbers due to grid requirements. This study evaluates the use of a wall model for LES (WMLES) on a channel with rotation at ã Reã _b = 34,000 from ã Roã _b = 0 to 0.38, non-staggered 90° ribbed duct with rotation at ã Reã _b = 20,000 from ã Roã _b = 0 to 0.70, stationary 45° staggered ribbed duct at ã Reã _b = 49,000, and two-pass smooth duct with a U-bend at ã Reã _b = 25,000 for ã Roã _b = 0 to 0.238 against WRLES and experimental data. In addition, for the two-pass smooth duct with a U-bend simulations, the synthetic eddy method (SEM) is used to artificially generate eddies at the inlet based on given flow characteristics. It is presented that WMLES captures the effects of Coriolis forces and predicts mean heat transfer augmentation ratios reasonably well for all simulations. The alleviated grid resolution for these simulations indicates significant reductions in resources, specifically, by a factor of 10-20 in non-staggered 90° ribbed duct simulations. The combined effects of density ratio, Coriolis forces, with SEM for the inlet turbulence, capture the general trends in heat transfer in and after the bend. / Master of Science
256

Experimental and Numerical Investigations of Optimized High-Turning Supercritical Compressor Blades

Song, Bo 25 November 2003 (has links)
Cascade testing and flow analysis of three high-turning supercritical compressor blades were conducted. The blades were designed at an inlet Mach number (M1) of 0.87 and inlet flow angle of 48.4 deg, with high camber angles of about 55 deg. The baseline blade was a conventional Controlled Diffusion Airfoil (CDA) design and the other two were optimized blades. The blades were tested for an inlet Mach number range from 0.61 to 0.95 and an inlet flow angle range from 44.4 deg to 50.4 deg, at high Reynolds numbers (1.2-1.9x10^6 based on the blade chord). The test results have shown lower losses and better incidence robustness for the optimized blades at higher supercritical flow conditions (M1>0.83). At the design condition, 30% loss reduction was achieved. The blade-to-blade flow was computed by solving the two-dimensional steady Navier-Stokes equations. Experimental results, in conjunction with the CFD flowfield characterization, revealed the loss reduction mechanism: severe boundary layer separation occurred on the suction surface of the baseline blade while no separation occurred for the optimized blades. Furthermore, whether the boundary layer was separated or not was found due to different shock patterns, different shock-boundary layer interactions and different pressure distributions on the blades. For the baseline blade, the strong passage shock coincided with the adverse pressure gradient due to the high blade front camber at 20% chord, leading to the flow separation. For the optimized blades, the high blade camber shifted to more downstream (30-40% chord), resulting in stronger flow leading edge acceleration, less strength of the passage shock near the blade surface, favorable pressure gradient right after the passage shock, thus no flow separation occurred. The flow understanding obtained by the current research can be used to guide the design of high-turning compressor blades at higher supercritical flow conditions. / Ph. D.
257

Flexural-Torsional Coupled Vibration of Rotating Beams Using Orthogonal Polynomials

Kim, Yong Y. 16 May 2000 (has links)
Dynamic behavior of flexural-torsional coupled vibration of rotating beams using the Rayleigh-Ritz method with orthogonal polynomials as basis functions is studied. The present work starts from a review of the development and analysis of four basic types of beam theories: the Euler-Bernoulli, Rayleigh, Shear and Timoshenko and goes over to a study of flexural-torsional coupled vibration analysis using basic beam theories. In obtaining natural frequencies, orthogonal polynomials used in the Rayleigh-Ritz method are studied as an efficient way of getting results. The study is also performed for both non-rotating and rotating beams. Orthogonal polynomials and functions studied in the present work are : Legendre, Chebyshev, integrated Legendre, modified Duncan polynomials, the eigenfunctions of a pinned-free uniform beam, and the special trigonometric functions used in conjunction with Hermite cubics. Studied cases are non-rotating and rotating Timoshenko beams, bending-torsion coupled beam with free-free boundary conditions, a cantilever beam, and a rotating cantilever beam. The obtained natural frequencies and mode shapes are compared to those available in various references and results for coupled flexural-torsional vibrations are compared to both previously available references and with those obtained using NASTRAN finite element package. / Master of Science
258

Correlation between Unsteady Loading and Tip Gap Flow Occurring in a Linear Cascade with Simulated Stator-Rotor Interaction

Staubs, Joshua Kyle 07 July 2005 (has links)
This thesis presents the results of a study performed in the Virginia Tech low speed linear cascade wind tunnel operating at a Reynolds number of 382,000 designed to model an axial compressor rotor. To simulate the flow created by the junction of a set of inlet guide vanes and the compressor casing, vortex generators were glued to a moving end wall. In this investigation, the tip clearance was varied from 0.83% to 12.9% chord. Measurements of the midspan and the tip blade loading were made using static pressure taps. The tip loading shows that the minimum suction surface pressure coefficient increases in magnitude linearly up to a tip clearance of 7.9% chord. Unsteady pressure was measured on the pressure and suction surfaces at the tip of two cascade blades using an array of 23 microphones mounted subsurface. These measurements reveal that the unsteady pressure at the blade tip is a linear function of tip clearance height. The instantaneous pressure shows that the surface pressure at the blade tip has the same character regardless of whether or not the blade is disturbed by the inflow vortices. This suggests that the vortex generators simply stimulate and organize the existing response of the blade. Single sensor hot-wire measurements were made within the tip clearance on the suction side of the blade 1mm from the tip gap exit. These measurements show that the mass flux through the tip clearance is closely related to the pressure difference across the tip gap. / Master of Science
259

From the Slime and Mud: Rumination as Fuel for Artistic Process

Van Natta, Olivia 01 January 2024 (has links) (PDF)
This thesis examines my work to harness ruminative thinking as a driving force for my art practice. With a combination of drawing and painting in watercolor pencil, I activate and engage with rumination through the act of sublimation as defined in clinical psychology. Repetition of process and hand-rendered detail serve as outward channels for my obsessive cyclical thoughts. Based on my experience living with the physical effects of a hyperactive mind, I depict botanical life symbolically in an effort to communicate impressions of the bodily sensations associated with rumination, such as palpable tension, anxiety, or dread. In my research, I have discovered connections between the art historical concept of the sublime and the clinical topic of rumination. Various definitions of the sublime are woven throughout my own analysis, contextualized against historical and contemporary art with an emphasis on science fiction. As a result of this visual research, I have successfully transformed ongoing experience with rumination into a quantifiable framework for my creative process.
260

Extrapolation Techiques for Very Low Cycle Fatigue Behavior of a Ni-base Superalloy

Daubenspeck, Brian R. 01 January 2010 (has links)
This thesis describes innovative methods used to predict high-stress amplitude, low cycle fatigue (LCF) behavior of a material commonly used in gas turbine blade design with the absence of such data. A combination of extrapolation and estimation techniques from both prior and current studies has been explored with the goal of developing a method to accurately characterize such high-temperature fatigue of IN738LC, a dual-phase Ni-base superalloy. A method capable of predicting high-stress (or strain) amplitude fatigue from incessantly available low-stress amplitude, high cycle fatigue (HCF) would lower the costs of inspection, repair, and replacement on certain turbine components. Three sets of experimental data at different temperatures are used to evaluate and examine the validity of extrapolation methods such as anchor points and hysteresis energy trends. Stemming from extrapolation techniques developed earlier by Coffin, Manson, and Basquin, the techniques exercised in this study purely implement tensile test and HCF data with limited plastic strain during the estimation processes. A standard practice in engineering design necessitates mechanical testing closely resembling planned service conditions; for design against fatigue failure, HCF and tensile data are the experiments of choice. High stress amplitude data points approaching the ultimate strength of the material were added to the pre-existing HCF base data to achieve a full-range data set that could be used to test the legitimacy of the different prediction methods. While some methods proved to be useful for bounding estimates, others provided for superior estimation.

Page generated in 0.0345 seconds