1 |
The Semi-Blind Channel Estimation for Amplify-and-Forward Space-Time Coded Cooperative NetworksCheng, Jung-hui 27 August 2010 (has links)
In this thesis, we study the effect of channel estimation on the performance of distributed
space-time coding (DSTC) in amplify-and-forward (AF) cooperative networks. The relay based transmission takes two phase. In phase I, the source transmits a block of symbols, which include training symbols and data to destination. After receiving signals at relay, the DSTC is adopted to re-encode signals in order to achieve diversity gain at relay nodes. At destination, the signals received in two
phase are combined and used to detected data symbols. In the thesis, for AF cooperative networks, the signal received at destination is effected the multiplication of channel coefficients on the source to relay and relay to destination links. Before
detection, channel coefficients of all links need to be estimated. We propose a semiblind method to estimate the channel coefficients of direct link and the relay links. The semi-blind channel estimation scheme, exploits a small number of training symbols
and second-order statistics of received signals. To improve the detection quality, the channel estimation is modified by treating the detected symbols as extra training symbols. Through simulation, it shows that the proposed channel estimation and the modification leads to obvious performance improvement.
|
2 |
Blind Identification of MIMO Systems: Signal Modulation and Channel EstimationDietze, Kai 29 December 2005 (has links)
Present trends in communication links between devices have opted for wireless instead of wired solutions. As a consequence, unlicensed bands have seen a rise in the interference level as more and more devices are introduced into the market place that take advantage of these free bands for their communication needs. Under these conditions, the receiver's ability to recognize and identify the presence of interference becomes increasingly important. In order for the receiver to make an optimal decision on the signal-of-interest, it has to be aware of the type (modulation) of interference as well as how the received signals are affected (channel) by these impediments in order to appropriately mitigate them.
This dissertation addresses the blind (unaided) identification of the signal modulations and the channel in a Multiple Input Multiple Output (MIMO) system. The method presented herein takes advantage of the modulation induced periodicities of the signals in the system and uses higher-order cyclostationary statistics to extract the signal and channel unknowns. This method can be used to identify more signals in the system than antenna elements at the receiver (overloaded case). This dissertation presents a system theoretic analysis of the problem as well as describes the development of an algorithm that can be used in the identification of the channel and the modulation of the signals in the system. Linear and non-linear receivers are examined at the beginning of the manuscript in order to review the a priori information that is needed for each receiver configuration to function properly. / Ph. D.
|
3 |
Blind Acquisition of Short Burst with Per-Survivor Processing (PSP)Mohammad, Maruf H. 13 December 2002 (has links)
This thesis investigates the use of Maximum Likelihood Sequence Estimation (MLSE) in the presence of unknown channel parameters. MLSE is a fundamental problem that is closely related to many modern research areas like Space-Time Coding, Overloaded Array Processing and Multi-User Detection. Per-Survivor Processing (PSP) is a technique for approximating MLSE for unknown channels by embedding channel estimation into the structure of the Viterbi Algorithm (VA). In the case of successful acquisition, the convergence rate of PSP is comparable to that of the pilot-aided RLS algorithm. However, the performance of PSP degrades when certain sequences are transmitted.
In this thesis, the blind acquisition characteristics of PSP are discussed. The problematic sequences for any joint ML data and channel estimator are discussed from an analytic perspective. Based on the theory of indistinguishable sequences, modifications to conventional PSP are suggested that improve its acquisition performance significantly. The effect of tree search and list-based algorithms on PSP is also discussed. Proposed improvement techniques are compared for different channels. For higher order channels, complexity issues dominate the choice of algorithms, so PSP with state reduction techniques is considered. Typical misacquisition conditions, transients, and initialization issues are reported. / Master of Science
|
4 |
A Precoding Scheme for Semi-Blind Channel Estimation in Cooperative NetworksChen, Yen-cheng 01 August 2012 (has links)
In this thesis, we proposed a precoding scheme for semi-blind channel estimation in amplify-and-forward (AF) multipath two-way relay networks (TWRN), where two terminals exchange their information through multi-relays. The precoding scheme, which diminishes computational complexity of semi-blind channel estimator, is used to distinguish received signal at both terminals from multi-relays.
By applying a non-redundant linear precoding scheme at multi-relays, we proposed a semi-blind channel estimation to estimate the channel impulse response (CIR) of direct link and the cascaded source-relay-terminal links. Firstly, semi-blind channel estimation adopts least-square (LS) estimation to find the CIR of direct link between both terminals using a smaller number of training symbols. Secondly, the CIR of the cascaded source-relay-terminal links are obtained through second-order statistics (SOS) of received signals at both terminals.
Consequently, the proposed scheme can effectively reduce the computational complexity and enhance the spectral efficiency in overall system. Simulation results corroborate the effectiveness of the proposed scheme.
|
5 |
Subspace-Based Semi-Blind Channel Estimation in Uplink OFDMA SystemsPan, Chun-Hsien 04 August 2008 (has links)
This thesis investigates the semi-blind channel estimation in uplink (UL) of Orthogonal Frequency Division Multiple Access (OFDMA) systems based on subspace decomposition. We exploit the orthogonality between signal subspace and noise subspace induced by virtual carriers (VCs) and cyclic prefix (CP) and the property of that the exclusive sub-carriers set is assigned to each user to estimate and identify the channels for each user individually. In OFDMA systems, when some users don¡¦t communicate with base station, the sub-carriers of non-active user provide extra redundancy for channel estimate to enhance the accuracy of channel estimation. Furthermore, the sufficient channel identifiability condition is developed.
Furthermore, a novel scheme, called as virtual carriers recovery (VCR) scheme, is proposed to improve the performance of the subspace-based channel estimation method. It suppresses the noise interference by recovering the VCs to zeros at receiver. The simulation results illustrate that the enhancement of VCR scheme is particularly apparent for the partially loaded OFDMA system at low signal to noise ratio (SNR). In addition, the VCR scheme increases the convergence rate of the subspace-base semi-blind channel estimation.
|
6 |
Optimisation d'un précodeur MIMO-OFDM dans le contexte de l'estimation aveugle et semi-aveugle du canal de communication / Optimization of a MIMO -OFDM precoder in the context of blind estimation and semi-blind of the communication channelChehade, Tarek 03 December 2015 (has links)
L’estimation de canal joue un rôle important dans les communications mobiles sans fil et en particulier dans les systèmes multi-antennes MIMO. Contrairement aux techniques classiques d’estimation de canal basées sur des séquences d’apprentissage ou des symboles pilotes, les techniques aveugles ne nécessitent aucune insertion de symboles d'apprentissage et permettent d'augmenter le débit utile. Les principales difficultés des techniques aveugles résident dans l’ambiguïté présente sur les estimées. Les techniques d’estimation semi-aveugles, basées sur les mêmes méthodes que l’estimation aveugle, sont plus robustes. Elles exploitent l’information aveugle ainsi que l’information provenant d’un nombre réduit de symboles d’apprentissage. Cette estimation du canal de communication est très utile dans les systèmes MIMO et permet de précoder le signal MIMO-OFDM en lui appliquant un pré-mélange permettant d'améliorer les performances. De nombreux types de précodeurs existent et leurs performances varient en fonction des critères d'optimisation retenus (Water-Filling, MMSE, Equal Error, max-SNR, max-d min …), mais aussi avec la qualité de l'estimation du canal de communication. Nous étudions dans cette thèse l’impact de l’utilisation de l’information du canal (CSI) provenant des méthodes d’estimation aveugle et semi-aveugle, dans l’application des précodeurs linéaires MIMO. Nous présentons également une étude statistique de l’erreur d’estimation provenant de ces méthodes. L’optimisation de ces précodeurs nous mène par la suite à exploiter un autre procédé permettant l’amélioration des performances : les codes correcteurs d’erreur. Nous nous intéressons particulièrement aux codes LDPC non-binaires et leur association avec les précodeurs linéaires MIMO. Nous montrons qu’une adaptation est possible et s’avère bénéfique dans certains cas. L’optimisation de cette association nous a permis de proposer un nouveau précodeur basé sur la maximisation de l’information mutuelle, robuste et plus performant. / Channel estimation plays an important role in wireless mobile communications, especially in MIMO systems. Unlike conventional channel estimation techniques based on training sequences or pilot symbols, blind techniques does not require the insertion of training symbols and allow higher throughput. The main problems of the blind lies in the ambiguity over the estimated channel. Based on the same methods as the blind estimation, the semi-blind estimation techniques are more robust. They exploit the blind information along with information provided by a small number of training symbols. The channel estimation is useful in MIMO systems and allows the precoding of the MIMO-OFDM signal by applying a pre-mixture in order to improve performance. Many types of precoders exist and their performance varies depending not only on the optimization criteria (Water-Filling, MMSE, Equal Error, max-SNR, max-d min ...), but also on the estimated channel. In this thesis we study the impact of using the channel information (CSI) from the blind and semi-blind estimation techniques to apply MIMO linear precoders. We also present a statistical study of the estimation error of these methods. The optimization of these precoders leads eventually to use another process allowing more performance improvement: the error correcting codes. We are particularly interested in non-binary LDPC codes and their association with linear MIMO precoders. We show that a matching is possible, and is beneficial in some cases. The optimization of this combination has allowed us to propose a new robust and more efficient precoder based on the maximization of mutual information.
|
7 |
Block-based Bayesian Decision Feedback Equalization for ZP-OFDM Systems with Semi-Blind Channel EstimationBai, Yun-kai 25 August 2007 (has links)
Orthogonal frequency division multiplexing (OFDM) modulator with redundancy has been adopted in many wireless communication systems for higher data rate transmissions. The introduced redundancy at the transmitter allows us to overcome serious inter-block interference (IBI) problems due to highly dispersive channel. However, the selection of redundancy length will affect the system performance and spectral efficiency, and is highly dependent on the length of channel impulse response. In this thesis, based on the pseudorandom postfix (PRP) OFDM scheme we propose a novel block-based OFDM transceiver framework. Since in the PRP-OFDM system the PRP can be employed for semi-blind channel estimation with order-one statistics of the received signal. Hence, for sufficient redundancy case the PRP-OFDM system with the Bayesian decision feedback equalizer (DFE) is adopted for suppressing the IBI and ISI simultaneously. However, for the insufficient redundancy case (the length of redundancy is less than the order of channel), we first propose a modified scheme for channel estimation. To further reduce the complexity of receiver, the maximum shortening signal-to-noise-ratio time domain equalizer (MSSNR TEQ) with the Bayesian DFE is developed for suppressing the IBI and ISI, separately. That is, after knowing the channel state information (CSI) and removing the effect of IBI with MSSNR TEQ, the Bayesian DFE is applied for eliminating the ISI. Via computer simulation, we verify that performance improvement, in terms of bit error rate (BER), compared with the conventional block-based minimum mean square error (MMSE)-DFE can be achieved.
|
8 |
Estima e igualación ciega de canales MIMO con y sin redundancia espacialVía Rodríguez, Javier 02 July 2007 (has links)
La mayor parte de los sistemas de comunicaciones requieren el conocimiento previo del canal, el cual se suele estimar a partir de una secuencia de entrenamiento. Sin embargo, la transmisión de símbolos piloto se traduce en una reducción de la eficiencia espectral del sistema, lo que imposibilita que se alcancen los límites predichos por la Teoría de la Información. Este problema ha motivado el desarrollo de un gran número de técnicas para la estima e igualación ciega de canal, es decir, para la obtención del canal o la fuente sin necesidad de transmitir una señal de entrenamiento. Normalmente, estas técnicas se basan en el conocimiento previo de ciertas características de la señal, tales como su pertenencia a un alfabeto finito, o sus estadísticos de orden superior. Sin embargo, en el caso de sistemas de múltiples entradas y salidas (MIMO), se ha demostrado que los estadísticos de segundo orden de las observaciones proporcionan la información suficiente para resolver el problema ciego.El objetivo de esta Tesis consiste en la obtención de nuevas técnicas para la estima e igualación ciega de canales MIMO, tanto en sistemas con redundancia espacial, como en casos más generales en los que las fuentes no presentan ningún tipo particular de estructura. De manera general, los métodos propuestos se basan en los estadísticos de segundo orden de las observaciones. Sin embargo, las técnicas se presentan desde un punto de vista determinista, es decir, los algoritmos propuestos explotan directamente la estructura de las matrices de datos, lo que permite obtener resultados más precisos cuando se dispone de un número reducido de observaciones. Adicionalmente, la reformulación de los criterios propuestos como problemas clásicos del análisis estadístico de señales, ha permitido la obtención de algoritmos adaptativos eficientes para la estima e igualación de canales MIMO. En primer lugar se aborda el caso de sistemas sin redundancia. Más concretamente, se analiza el problema de igualación ciega de canales MIMO selectivos en frecuencia, el cual se reformula como un conjunto de problemas de análisis de correlaciones canónicas (CCA). La solución de los problemas CCA se puede obtener de manera directa mediante un problema de autovalores generalizado. Además, en esta Tesis se presenta un algoritmo adaptativo basado en la reformulación de CCA como un conjunto de problemas de regresión lineal acoplados. De esta manera, se obtienen nuevos algoritmos bloque y adaptativos para la igualación ciega de canales MIMO de una manera sencilla. Finalmente, el método propuesto se basa, como muchas otras técnicas ciegas, en el conocimiento a priori del orden del canal, lo que constituye un problema casi tan complicado como el de la estima o igualación ciega. Así, en el caso de canales de una entrada y varias salidas (SIMO), la combinación de la técnica propuesta con otros métodos para la estima ciega del canal permite obtener un nuevo criterio para extracción del orden de este tipo de canalesEn segundo lugar se considera el problema de estima ciega de canal en sistemas con algún tipo de redundancia o estructura espacial, con especial interés en el caso de sistemas con codificación espacio-temporal por bloques (STBC). Específicamente, se propone una nueva técnica para la estima ciega del canal, cuya complejidad se reduce a la extracción del autovector principal de una matriz de correlación modificada. El principal problema asociado a este tipo de sistemas viene dado por la existencia de ciertas ambigüedades a la hora de estimar el canal. En esta Tesis se plantea el problema de identificabilidad de una manera general, y en el caso de códigos ortogonales (OSTBCs) se presentan varios nuevos teoremas que aseguran la identificabilidad del canal en un gran número de casos. Adicionalmente, se proponen varias técnicas para la resolución de las ambigüedades, tanto en el caso OSTBC como para códigos más generales. En concreto, se introduce el concepto de diversidad de código, que consiste en la combinación de varios códigos STBC. Esta técnica permite resolver las indeterminaciones asociadas a un gran número de problemas, y en su versión más sencilla se reduce a una precodificación no redundante consistente en una simple rotación o permutación de las antenas transmisoras.En definitiva, en esta Tesis se abordan los problemas de estima e igualación ciega de canal en sistemas MIMO, y se presentan varias técnicas ciegas, cuyas prestaciones se evalúan mediante un gran número de ejemplos de simulación. / The majority of communication systems need the previous knowledge of the channel, which is usually estimated by means of a training sequence. However, the transmission of pilot symbols provokes a reduction in bandwidth efficiency, which precludes the system from reaching the limits predicted by the Information Theory. This problem has motivated the development of a large number of blind channel estimation and equalization techniques, which are able to obtain the channel or the source without the need of transmitting a training signal. Usually, these techniques are based on the previous knowledge of certain properties of the signal, such as its belonging to a finite alphabet, or its higher-order statistics. However, in the case of multiple-input multiple-output (MIMO) systems, it has been proven that the second order statistics of the observations provide the sufficient information for solving the blind problem.The aim of this Thesis is the development of new blind MIMO channel estimation and equalization techniques, both in systems with spatial redundancy, and in more general cases where the sources do not have any particular spatial structure. In general, the proposed methods are based on the second order statistics of the observations. However, the techniques are presented from a deterministic point of view, i.e., the proposed algorithms directly exploit the structure of the data matrices, which allows us to obtain more accurate results when only a reduced number of observations is available. Additionally, the reformulation of the proposed criteria as classical statistical signal processing problems is exploited to obtain efficient adaptive algorithms for MIMO channel estimation and equalization.Firstly, we consider the case of systems without spatial redundancy. Specifically, we analyze the problem of blind equalization of frequency selective MIMO channels, which is reformulated as a set of canonical correlation analysis (CCA) problems. The solution of the CCA problems can be obtained by means of a generalized eigenvalue problem. In this Thesis, we present a new adaptive algorithm based on the reformulation of CCA as a set of coupled linear regression problems. Therefore, new batch and adaptive algorithms for blind MIMO channel equalization are easily obtained. Finally, the proposed method, as well as many other blind techniques, is based on the previous knowledge of the channel order, which is a problem nearly as complicated as the blind channel estimation or equalization. Thus, in the case of single-input multiple-output (SIMO) channels, the combination of the proposed technique with other blind channel estimation methods provides a new criterion for the order extraction of this class of channels.Secondly, we consider the problem of blind channel estimation in systems with some kind of redundancy or spatial structure, with special interest in space-time block coded (STBC) systems. Specifically, a new blind channel estimation technique is proposed, whose computational complexity reduces to the extraction of the principal eigenvector of a modified correlation matrix. The main problem in these cases is due to the existence of certain ambiguities associated to the blind channel estimation problem. In this Thesis the general identifiability problem is formulated and, in the case of orthogonal codes (OSTBCs), we present several new theorems which ensure the channel identifiability in a large number of cases. Additionally, several techniques for the resolution of the ambiguities are proposed, both in the OSTBC case as well as for more general codes. In particular, we introduce the concept of code diversity, which consists in the combination of several STBCs. This technique avoids the ambiguities associated to a large number of problems, and in its simplest version it reduces to a non-redundant precoding consisting of a single rotation or permutation of the transmit antennas.In summary, in this Thesis the blind MIMO channel estimation and equalization problems are analyzed, and several blind techniques are presented, whose performance is evaluated by means of a large number of simulation examples.
|
9 |
Blind Channel Estimation Based On The Lloyd-max Algorithm Innarrowband Fading Channels And JammingDizdar, Onur 01 June 2011 (has links) (PDF)
In wireless communications, knowledge of the channel coefficients is required for coherent
demodulation. In this thesis, a blind channel estimation method based on the Lloyd-Max
algorithm is proposed for single-tap fading channels. The algorithm estimates the constellation
points for the received signal using an iterative least squares approach. The algorithm is
investigated for fast-frequency hopping systems with small block lengths and operating under
partial-band and partial-time jamming for both detecting the jammer and estimating the
channel. The performance of the Lloyd-Max channel estimation algorithm is compared to the
performance of pilot-based channel estimation algorithms which also use the least squares
approach and non-coherent demodulation and decoding.
|
10 |
Blind Adaptive Receivers for Precoded SIMO DS-CDMA SystemLi, Meng-Yi 08 August 2008 (has links)
The system capacity of the direct-sequence code division multiple access (DS-CDMA) system is limited mainly due to the multiple access interference (MAI), this is basically due to the incomplete orthogonality of spreading codes between different users. In wireless communication environments, the use of DS-CDMA system over multipath channels will introduce the effect of inter-symbol interference (ISI), thus the system performance might degrade, dramatically. To circumvent the above-mentioned problems many adaptive multiuser detectors are proposed, such as the minimum mean square error (MMSE) criteria subject to certain constraints. Unfortunately, with the MMSE receiver it requires an extra training sequence, which decreases the spectral efficiency. To increase the spectral efficiency, the blind adaptive receivers are adopted. In the conventional approach the blind adaptive receiver is developed based on the linear constrained minimum variance (LCMV) criteria, which can be viewed as the constrained version of the minimum output energy (MOE) criteria. Other alternative of designing the blind adaptive receiver is to use the linear constrained constant modulus (LCCM) criteria. In general, the LCCM receiver could achieve better robustness due to the changing environment of channel.
With the above-mentioned adaptive linearly constrained multi-user receivers, we are able to reduce the effects of ISI and MAI and achieve desired system performance. However, for worse communication link, the conventional adaptive multi-user detector might not achieve desired performance and suppress interference effectively. In this thesis, we consider a new approach, in which the pre-coder similar to the Orthogonal Frequency Division Multiplexing (OFDM) systems is introduced in the transmitter of the DS-CDMA system. In the receiver, by using the characteristics of pre-coder we could remove the effect of ISI, effectively, and follows by the adaptive multi-user detector to suppress the MAI. Two most common use pre-coders of the OFDM systems are the Cyclic Prefix (CP) or Zero Padding (ZP). Thus the pre-coded DS-CDMA systems associated with the adaptive blind linearly constrained receiver could be employed to further improve the system performance with the cost of decreasing the spectral efficiency.
|
Page generated in 0.1797 seconds