• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

How the Clinical Environment Shapes the Relationship Between Medical Learners and Clinical Teachers

Block, Emily May January 2019 (has links)
Introduction: A trusting relationship between medical learners and clinical teachers is vital for educational and clinical productivity. Perceptions of a trusting relationship are influenced by the learner’s perception of the interpersonal risk (i.e. being humiliated) for engaging in learning behaviours (e.g. asking questions, seeking feedback, learning from mistakes). Perceptions of low interpersonal risk are linked to learners feeling comfortable engaging in learning behaviours. What is less clear is how the clinical environment may influence a medical learner’s perception of trust. Methods: Using constructivist grounded theory, we conducted semi-structured interviews with 19 medical clerks and 10 clinical educators affiliated with a single institution. Interviews explored participants’ personal experiences of positive, negative or challenging learner-teacher relationships in the clinical environment. Results: Through qualitative analysis, we developed a theory of Co-Navigation which describes how teachers and learners have common points of interaction to solidify or diminish trust as they navigate the dynamics of the clinical environment. These points in the relationship that each must co-navigate include: preparing to work together; asking questions; engaging in clinical work; and addressing learner mistakes. Perceptions of whether the opportunity solidified or dissolved trust, arose from learners’ perception of the amount of effort their teacher made to mitigate stress learners experienced in the learning environment. Limitations: Our interview participants were recruited as individuals; we did not examine their perceptions of their relationships with each other. Co-recruitment of teacher-learner dyads may be a strategy to further refine this theory in future research. Conclusion: The Co-Navigation theory helps teachers and learners identify key opportunities in the relationship and suggests approaches to solidifying trust at these critical junctures. It highlights the role the clinical environment plays in facilitating and constraining opportunities to establish trust. / Thesis / Master of Health Sciences (MSc) / This thesis project aimed to understand how the clinical environment shapes the way medical learners interact and build relationships with their clinical teachers. We interviewed medical students and clinical teachers who worked together during the medical learner’s clerkship year of clinical training in various healthcare specialties. In the interviews, we discussed learner experiences of positive and negative relationships with clinical teachers. We developed a theory which describes four opportunities that medical learners and clinical teachers will encounter that can support the development of a trusting relationship. This thesis project will contribute insight into types of interactions that can be highlighted as strategic points for educational interventions and administrative reform, to support the development of trusting learner-teacher relationships during clerkship.
2

Neotectonics, Seismic and Tsunami Hazards, Viti Levu, Fiji.

Rahiman, Tariq Iqbal Hamid January 2006 (has links)
Viti Levu, the main island of Fiji, is located in a seismically active area within the Fiji Platform - a remnant island arc that lies in a diffuse plate boundary zone between the Pacific and Australian tectonic plates in the southwest Pacific. The southeast coast of Viti Levu is a highly developed and populated part of Fiji and is vulnerable to the effects of large earthquakes that are expected to occur both onshore and offshore. The structural framework and the origin of seismicity within the Fiji Platform, as well as the seismic and tsunami hazards of central and southeast Viti Levu are investigated. The upper crust of southeast Viti Levu is dissected by several intersecting fault/lineament zones. These are mapped from remote sensing imagery of the surface (topography, radar, and aerial photos) and of the basement (magnetic), and have been subject to rigorous statistical tests of reproducibility and verification with field mapped fault data. Lineaments on the various imagery correlate with faults mapped in the field and show spatial continuity between and beyond mapped faults, thereby providing a fuller coverage of regional structural patterns than previously known. Some fault/lineament zones extend beyond the coastline to the offshore area of southeast Viti Levu. Here high resolution SeaBAT 8160 multibeam bathymetry data and seismic reflection data show that the fault zones occur along, and exert control on the locations of a number of linear submarine canyons. The morpho-structural expression of these canyons are contiguous with fault controlled physiographic features mapped on the nearshore marginal shelf (rectilinear bays and peninsulas, reef passages) and on land (fault valleys, slope and drainage alignments forming lineaments). The canyons are considered to have developed from several cycles of downslope incising and infilling events, whilst their positions were still primarily controlled by zones of weakness created by the fault zones. The principal fault sets in southeast Viti Levu represent generations of regional tectonic faulting that pervaded the Fiji Platform during and after disruption of the proto Fijian arc in the Middle to Late Miocene. These fault sets combine to form a complex network of interlocking faults creating a fault mesh that divides the upper crust into a number of fault blocks ranging from ~2 to 30 km. It is inferred that the fault mesh evolved throughout the Neogene as a response to the anticlockwise rotation of the Fiji Platform through progressive development of different fault sets and intervening crustal block rotations. Regional tectonic deformation is presently accommodated in a distributed manner through the entire fault mesh. Low magnitude earthquakes (<M4) occur regularly and may represent ruptures along short linking segments of the fault mesh, while infrequent larger earthquakes (>M4) may result from complex rupture propagation through several linking fault segments of the mesh that lie close to optimum stress orientations. This interpreted model of distributed deformation through the fault mesh for southeast Viti Levu is inferred to be characteristic of the style of active deformation that occurs throughout the entire Fiji Platform. Seismic activity is primarily responsible for triggering submarine landslides that occur on the southeastern slope of Viti Levu. These slides typically occur on the outer barrier reef edge, as well as in submarine canyon heads and walls, and in the mid slope areas. They are characteristically translational and lack bathymetric evidence for displaced masses. Morphometric analysis and empirical modelling, show that slides triggered at shallow water depths, within 5 km of the coastline, at the outer barrier reef edge and submarine canyon heads, produce the largest near-field tsunami amplitudes. Such slides are interpreted to represent a significant local tsunami hazard. A detailed case study of the destructive 1953 Suva tsunami that followed the Ms 6.75 Suva earthquake, reveals that the source of this tsunami was a 60 million cubic metre submarine landslide at the head of the Suva Canyon, 4 km to the WSW of Suva City. A test simulation of this tsunami using the Geowave tsunami generation, propagation and inundation model, closely replicates the wave heights and arrival times recorded in 1953. This simulation also reveals that high variability in tsunami impact over short coastal distances of southeast Viti Levu is attributable to the complex interplay of wave propagation with the barrier reef system, erratic lagoon bathymetry and the irregularly shaped coastline. A predictive simulation using Geowave, based on an incipient failure in the 1953 source area and on a potentially worse case scenario event at or near high-tide, is used to show a maximum vertical run up of at least 4 m and a maximum horizontal inundation level of at least 400 m at the Suva coast. The seismic hazard of five sites on Viti Levu, including Suva City, Navua and Nausori Towns, and the Monsavu and Nadarivatu dam sites, is evaluated using a deterministic approach, and seven newly identified crustal fault earthquake source structures. The maximum magnitudes interpreted for these structures, estimated using empirical relationships, range from Mw 6.8 to 7.6. The Suva Canyon Fault, the Naqara Fault, the Mavuvu/Fault Lineament Zone and the Nasivi Fault provide the controlling maximum credible earthquakes (CMCE) at all the five sites. The CMCE peak ground acceleration values for Suva City range from 0.4g to 0.6g, for Nausori Town from 0.18g to 0.2g, for Navua Town from 0.27g to 0.32g, for Monasavu from 0.39g to 0.42g, and for Nadarivatu from 0.23g to 0.33g. The horizontal spectral accelerations at a period equal to 0.2 seconds, calculated using the CMCEs, are comparable to accelerations derived by probabilistic methods that have return periods between 50 and over 1000 years.
3

Neotectonic evolution of the Serrania Del Interior range and Monagas fold and thrust belt, Eastern Venezuela : Morphotectonics, Seismic Profiles Analyses and Paleomagnetism / Evolution Néotectonique de la Serranía Del Interior et de la ceinture plissée de Monagas, Nord-Est du Venezuela : Morphotectonique, Interprétation Sismique et Paléomagnétisme

Fajardo, Atiria 19 November 2015 (has links)
La convergence oblique entre les plaques Caraïbes et Amérique du Sud à partir de l'Oligocène a conduit à la formation de la cordillère « Serranía del Interior » (SDI) et de son avant pays au sud (bassin de Maturín) et la ceinture plissée de Monagas. D’abord transpressif (direction NW-SE), le déplacement entre les deux plaques devient à compter de ~12 Ma principalement une translation O-E qui s’accommode principalement sur la faille d’El Pilar. Cependant, des indices de compression active ont été identifiés à la terminaison de la faille d'Urica dans la chaine plissée de Monagas. Pour discuter des mécanismes de cette déformation compressive actuelle, nous avons mis en œuvre une interprétation sismique (2D et 3D), une étude géomorphologique et une étude paléomagnétique. Depuis le front sud de la SDI dans la chaîne plissée de Monagas, l'interprétation sismique et l’analyse géomorphologique se sont concentrées sur les chevauchements de San Félix, Tarragona, Punta de Mata, Jusepín et Amarilis. Deux discordances miocènes (Mid-Miocene Unconformity (MMU) de ~10 Ma et Late Miocene Unconformity (LMU) de ~5,3 Ma) ont été cartographiées sur la sismique. En s’appuyant sur la LMU, il a été calculé à l’aplomb de ces accidents un taux de soulèvement plio-pléistocène de ~0,4 mm/a. Invisibles sur la sismique, des déformations ont aussi été observées en surface sur ces accidents (des terrasses fluviatiles basculées, plissées et faillées et des anomalies de drainage). Datées par des méthodes cosmonucléides (10Be et 26Al), l’âge des terrasses alluviales déformées sont compris entre ~90 ka sur le chevauchement de Tarragona et ~15 ka dans la zone de Punta de Mata. Un taux minimal de soulèvement pléistocène terminal à l’aplomb des chevauchements a été calculé entre 0,1 et 0,6 mm/a. Cette gamme de vitesse recouvre celle renvoyée par la LMU et montre que la déformation n'a pas varié significativement pendant les derniers 5,3 Ma. Ces observations montrent que les chevauchements de Tarragona, Pirital El Furrial et d’autres plus jeunes développés dans la formation Carapita restent actifs. Cette déformation superficielle s’estompe rapidement vers l’est près de la ville Maturín. Nous interprétons cette déformation comme liée au jeu récent de la faille d'Urica qui se termine au sud en queue de cheval. La faille d’Urica accommoderait donc une partie du déplacement entre plaques Caraïbe et Amérique du Sud. Une étude paléomagnétique a été réalisée dans les blocs de Caripe et Bergatín au sein de la SDI où 27 localités ont été échantillonnées dans les sédiments du Crétacé au Paléocène. Une observation clé de cette étude a été la mise en évidence d'une composante paléomagnétique stable déviée vers le Nord Est avec des polarités normale et inverse. Les analyses statistiques de ces composantes indiquent une acquisition postérieure au plissement de la SDI (< ~12 Ma). La déclinaison moyenne dans les blocs de Caripe et de Bergatín indique une rotation horaire de R=37º±4 º autour d’un axe vertical. Le taux de rotation post-Miocene moyen avoisine ~3.7º/Ma et reste probablement actif. Nous proposons de rattacher cette rotation horaire à un système de failles type "Riedel" (Urica et San Francisco) en relation avec la faille d’El Pilar. / In Northeastern Venezuela, the tectonic provinces of the Serranía Del Interior thrust belt (high hills), the Monagas Thrust belt (foothills) and the Maturín foreland basin formed as a result of the oblique convergence between the Caribbean and South American plates since the Oligocene. GPS data show that post 12 My wrenching component between the plates is accommodated predominantly by the E-W strike-slip El Pilar Fault. However, evidence of active compression has been identified in the southern limit of the NW-SE dextral Urica Fault, specifically, in the Monagas Fold and Thrust Belt. In order to constrain the neotectonics of this area, this thesis presents a combined approach, which includes geomorphological study, seismic and paleomagnetism. In the Monagas Fold and Thrust Belt, the geomorphological study and the seismic interpretation were focused on five zones. From the foothills to the deformation front, these zones are: San Felix, Tarragona, Punta de Mata, Jusepín and Amarilis. These areas show surface deformations such as topographic uplifts, tilted terraces, folded terraces, faulted terraces, and drainage anomalies. The dating of the river terraces through 10Be and 26Al methods indicates that these terraces formed in the Late Pleistocene. The oldest terrace located in the Tarragona zone has a maximum exposure age of ~90 ky and the youngest located in the Punta de Mata zone of ~15 ky. From this dating, a minimum vertical deformation rate between ~0.6-0.1 mm/y was calculated for this area. Using the seismic interpretation of a 3D block, the surfaces of two unconformities (MMU and LMU) have been mapped. The age obtained for the LMU (~5.3 My), yield a Plio-Pleistocene uplift rate between ~0.3-0.4 mm/y, which is close to the vertical deformation rate calculated from the terraces dated. These similar rates seem to indicate that the deformation rate in the MFTB has not changed significantly for the last 5.3 My. The deformed surfaces observed in the field and in DEM images coincide vertically with the deep structures interpreted in the seismic lines. I propose that the deformation on the surface is linked to the Tarragona, Pirital, Furrial thrusts and the Amarilis Backthrust activity and to the youngest thrusts developed in the Carapita Formation. However, this surface deformation dies out near the city of Maturín, therefore, the neotectonic deformation is inferred to be caused by local tectonics. I propose that this local compressive deformation could have been generated by a horsetail termination in the southern limit of the Urica Fault which reactivated the oldest thrusts (Tarragona and Pirital thrusts) and deformed the post-Middle Miocene units until reaching the surface. In the zones where the El Pilar Fault mainly accommodates the wrenching component, block rotation is likely. For that reason, a paleomagnetic study was conducted in the Caripe and Bergatín blocks of the Serranía Del Interior where 27 sites were sampled in Cretaceous to Paleocene sediments. Statistics analyses of the components yield a negative bedding-tilt test, indicating that this component was acquired post ~12 My after the folding process in the Serranía del interior. The average declination indicates a clockwise block rotation of R = 37º ± 4º and a post-Middle Miocene rotation rate of ~3.7º/My in both the Caripe and Bergatín blocks. This rotation rate is probably still active. I propose to relate the regional clockwise rotation to the development of a synthetic Riedel shear system formed by the El Pilar Fault (master regional fault) and by the Urica and San Francisco synthetic Riedel shears.

Page generated in 0.0994 seconds